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Introduction

In mathematics, a sequence is defined as an ordered list of numbers. Each number in a sequence is called a
term. The length of a sequence can vary. Finite sequences, are sequences that stop after a certain number of
terms. Infinite sequences do not stop and are assumed to continue indefinitely. For example, the sequence
2,4,6,8,10 is a finite sequence with five terms, while 2,4,6,8,10,… is an infinite sequence. Many potentially
infinite sequences are formed according to simple rules, and such sequences are also often referred to as
“patterns”.

At the high school level, students are introduced to three main special types of sequences: arithmetic (linear),
geometric (exponential), and quadratic. This curriculum unit discusses each of these three types in the
sections below. When given a few terms in a sequence, students are expected to classify the sequence type,
as being potentially one of the three special ones, or “other”. They are also asked to identify key
characteristics of the sequence, and to use these to write both recursiveequations and explicit equations for
an, the nth term in the sequence. Note that some texts may use the term rule in place of equation. Many of my
students are able to observe patterns represented in the sequences, but struggle in taking those observations
and translate translating them into algebraic representations.

In textbooks, formulas are frequently just given to students based on specific types of sequences. This unit will
look at how the common difference, second difference, or common ratio between consecutive terms of a
sequence can be used to determine a sequence’s recursive and explicit equations. In addition to tabular
models, geometric representations of sequences will be used as an alternative approach to represent
sequences, leading to algebraic representations. Overall, this unit serves as a supplement to enhance my
existing textbook resources, to better support students in any course that works with linear, quadratic, and
exponential sequences and functions.
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Background and Demographics

William C. Overfelt High School is located in San Jose, California. When people hear of San Jose, they tend to
think of Silicon Valley, high tech, and astronomical housing prices. Those of us who live and work in and
around the neighborhood of Overfelt, commonly refer to Overfelt as being located in the East Side of San Jose.
In a city of over one million people, the East Side is home to predominately Latinos, with African Americans,
Vietnamese, Filipinos, Cambodians, and Samoans making up smaller, but still significant ethnic populations. At
Overfelt, approximately 80% of our student body consists of Latino/Hispanic students. Although the average
cost to rent a house in Overfelt’s area is close to $3000 a month, the average annual family income is just
over $60,000 a year. Currently, over 80% of students at Overfelt qualify for federal free or reduced lunch, and
under 50% of our students’ parents are high school graduates. The East Side is its own unique, vibrant, and
strong community that is a different world from the rest of San Jose.

During the last three years, the East Side Union High School District (ESUSHD) has transitioned to the
Common Core State Standards for Mathematics from the earlier California mathematics standards. This
process has included a gradual replacement of the three course math sequence comprising Algebra 1,
Geometry, and Algebra 2, by a series of three Integrated Math courses titled Common Core State Standards
(CCSS) Mathematics I, II, and III. There was significant debate regarding which curriculum would be adopted
for the integrated math course sequence. During the transition period, there were four different pilot curricula
spread unevenly across the eleven high schools in our district. Math teachers were able to choose their
preferred curriculum to pilot. Though each of the pilots addressed similar content, what they emphasized
varied drastically, and the order in which content was taught also varied significantly.

Because of the different curricula used throughout the district, and even within a single school, students were
most affected when their schedules changed during the school year, or if they transferred between schools.
Students who moved into our school and district struggled, as the ESUHSD no longer offered Algebra 1,
Geometry, and Algebra 2 courses. For example, arithmetic and geometric sequences were previously in the
second semester of Algebra 2, but in our current curriculum, they appear during the first semester of Math 1.
The misalignment between old and new course sequences inadvertently created significant gaps in content
knowledge for some students.

An additional point of difficulty for making appropriate course assignments for entering students is the fact
that the ESUHSD serves seven feeder elementary school districts. At Overfelt, we receive students from
multiple middle schools. Most come from Alum Rock Union Elementary School District, but we also receive a
small, yet significant, number of students from the Evergreen Elementary School District. Though it should not
matter which mathematics textbook curriculum a school uses, the lack of consistency in background
contributed to the prevalence in gaps of math knowledge. Partly because of the gaps in knowledge, the
Integrated Math 1 course I taught experienced a high amount of student turnover. In my experience, it is not
uncommon to have over fifty different students enrolled in one section of Math 1 over the course of the school
year.
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Rationale

For the last eight years I have taught every level of high school math, from Algebra 1 through AP Calculus BC
and AP Statistics. As a result, I gained a unique perspective on the progression of mathematical content and
topics in secondary schools. The students I receive in AP Calculus help make me aware of the gaps in
mathematical knowledge that accumulate over years. I observed that students who struggle at the pre-
calculus and calculus level were successful in the foundational level courses because they memorized
formulas and could repeat procedures that closely resembled example problems. However, these students are
often unable to explain their reasoning or demonstrate their understanding of the underlying concepts. By my
observations, math is not the favorite subject for many of my students. As a consequence, many students
take the requisite courses to graduate and simply want to do enough to pass the class. Thus, for various
reasons, many students learn superficially through rote memorization and application of formulas and
shortcuts, rather than engaging with concepts to gain understanding and build connections between topics
within mathematics.

As our school and district transitioned to the Common Core State Standards (CCSS), mathematics courses
shifted their focus away from a skills based approach towards the Standards for Mathematical Practice that
emphasize both computational fluency and conceptual proficiency.1 With all the changes in the structures of
mathematics courses at Overfelt and our district, there was a frequent mismatch between the course
objectives and the content provided through the curricula. A major objective, common across all curricula in
the Integrated Math 1 course during the first semester, includes the analysis of arithmetic/linear sequences,
and geometric/exponential sequences of numbers, and modeling these sequences by writing explicit
equations. Afterwards, students would be given “real life” scenarios that follow arithmetic and geometric
patterns. Depending on a curriculum’s approach, this topic could span multiple units of study and be extended
for weeks to months.

Last year, my district adopted the Big Ideas Integrated Math curriculum last year. In stark contrast to our
previous curriculum, which languished through multiple modules about sequences, the current curriculum
rushes through sequences by including only two sections about them, each only two to three pages in length.
The abrupt presentation of the topics expects students to quickly glance at a sequence, such as 5,11,17,23,…
and within the recommended 1 hour for the entire lesson, identify and verify the common difference, write an
explicit function that models the situation, and apply their findings to compute later terms of the sequence.
Likewise, for geometric/exponential patterns, students are expected to complete the same tasks as for a
linear pattern, except they would be asked to identify the common ratio rather than the common difference.

Many students are successful with each individual task regarding a sequence in the specific units of study, but
find it difficult to respond to the following question: Is the sequence arithmetic, geometric, or neither? Explain.
Most of my students are able to recognize if a pattern is linear, geometric, or neither but have difficulty
explaining how they know. If students do recognize sequences as arithmetic or geometric, they have
significant difficulty when asked to write an explicit equation. When the two types of sequence are taught as
discrete content units in different chapters, the ability to analyze a sequence and make connections between
the sequence and its defining characteristics is inhibited. Some students find success at writing explicit
equations for arithmetic and geometric sequences, as the general formulas are readily available in our
textbook and accompanying resources. However, I notice that many of those same students who can write the
equations from a sequence cannot take an equation and explain the relationship between the constants and
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the features of an arithmetic and geometric sequence.

Quadratic patterns are no longer prescribed in the Integrated Math 1 standards and occur in Math 2. Ironically,
however, one of our own district standards for Math 1 expects students to be able to construct and compare
linear, quadratic, and exponential sequences and to use them to solve problems. In the pilot year of our
current curriculum, my co-teacher and I completed the entire course with enough time to include additional
lessons during the year. Thus, there is time in Math 1 to introduce, explore and analyze quadratic functions.
Introducing the concept in Math 1 will also provide valuable preparation for the Integrated Math 2 and Math 3
courses, and all of these topics are major components of the first unit in the Math Analysis course.

In my Integrated Math 1 courses, I have many math-phobic students who, due to a lack of success in prior
courses, feel as though they are scarred by mathematics. I see many students struggle when they confront
the intellectual jump from arithmetic computations to algebra, especially, using variables. For many of my
students, it is a major obstacle that elicits allergic reactions to mathematics.

Students who struggle in the higher level math courses often have the opposite problem. They can perform
computations and write equations by following steps or replicating the procedures shown in example
problems. Where these students struggle is when problems do not look like the examples, or if they do not
remember the formulas from the textbooks. One reason for this struggle is that the Integrated Math courses
give students quite limited exposure to sequences and functions that that define arithmetic, geometric, or
quadratic sequences. I had students taking pre-calculus and calculus level courses who struggled to write and
graph linear equations.

One goal of this unit is to provide students with a tool to analyze sequences of numbers. This will be
accomplished using difference tables, which provide a structure to organize and assist students as they look
for patterns to deduce whether sequences are arithmetic, geometric, quadratic, or none of these. Through
examples, this unit shows how to use difference tables to analyze arithmetic sequences with the ultimate goal
of writing an explicit equation. For geometric sequences, this unit replaces the difference table with an
analogous ratio table, again with the goal of writing an explicit equation. Further extension of the difference
table will be applied to quadratic cases. With the quadratic case, a computation based procedure will be
shown to enable quadratic sequences to be written as explicit equations.

Mathematical Sequences

Each number in a sequence is a term and can be identified by its position in a sequence. Given a sequence,
students are expected to extend patterns to find subsequent terms, create an algebraic representation of the
problem by writing an explicit formula in terms of n for the n-th term in the sequence, and use their explicit
formulas to further analyze the sequence. This unit will discuss arithmetic and geometric sequences using the
sequence notation, an, while for quadratic sequences, we will be using function notation f(n).  Either
representation is acceptable, and I chose to use different notations because the sequence notation appears in
the common course exams used at our school for Math 1, while function terminology is introduced after
arithmetic and geometric sequences. Note that the terms arithmetic and linear are often used synonymously,
as are geometric and exponential.
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A difference sequence is a sequence found by taking the difference between two successive terms of an
original sequence. In general, any sequence is determined by its first term and its difference sequence. This
follows because the nth term, an, of the original sequence is the sum of the i) first term of the original
sequence and ii) the first n-1 terms of the difference sequence. At the high school level, this fact is often
provided without proof or further formal elaboration, as the proof requires induction. Al Cuoco provides a
thorough explanation and justification through examples and proof in the text Mathematical Connections.2
Finding the difference sequence is useful because it may be simpler than the original sequence. We can also
take the difference sequence of an existing difference sequence, which is called the second difference. Using
the same argument as seen with the first difference, it would then follow that the original sequence is
determined by i) its first term; ii) the first term of its first difference sequence and iii) its second difference
sequence. And so forth, for further difference sequences. As demonstrated in the sections below, I plan to
discuss with my students these facts and demonstrate how to find difference sequences and writing linear
sequences in terms of the first term and their difference sequence through multiple examples.

This unit uses the fact that any sequence is determined by its first term and its difference sequence to
highlight the connection that the general result about reconstructing a sequence from its first term and its
difference sequence can be followed by study of sequences for which the difference sequence is constant, i.e.,
all terms have the same value. In particular, for linear sequences, the first difference sequence is constant,
and vice versa. With my Math 1 students, I would discuss the derivation of the formula for the nth term of a
linear sequence with a constant difference, by showing multiple examples of these types of sequences. Below,
I will show how I would build an equation for an arithmetic sequence.

For quadratic sequences, the second difference sequence is constant. I would show my students how to verify
sequences as quadratic by finding the second differences of a sequence. For my pre-calculus students, I would
show to my students through subsequent applications of the same argument, the general theorem for
differences which states that a constant nth difference implies a nth degree polynomial will model the
sequence. The general theorem is also stated as a fact for high school students to use by Cuoco, with no
formal proof provided for students, but a proof is provided for teachers as enrichment in Mathematical
Connections. For exponential sequences, the difference sequence is also exponential, with the same ratio
between terms. Difference sequences are not as useful for studying exponential sequences since the result is
a sequence with the same level of difficulty/complication. I would have my students work with sequences
without constant differences so they understand that difference sequences are only a tool to help us analyze
and classify the type of sequence.

Arithmetic (Linear) Sequences

In the current textbook adopted by our district, students are given the definition of a linear sequence an=a1

+d(n-1) to find the nth term of a sequence if they know a1, the first term, and d, the common difference. The
curriculum resources available offer exercises for students to practice writing an algebraic representation by
telling students to identify the first term and find the common difference by taking two consecutive terms and
subtracting later term by its preceding term using the equation d = an+1 - an. Once identified, students are
expected to substitute the two values into the equation for an, and simplify to find the equation that models
the sequence. 
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My students who possess strong number sense skills are often able to recognize arithmetic patterns and
determine the common difference using mental arithmetic. Identifying the first term is usually a simple task
since it is often already labeled in problems. Despite being able to write an equation for an, students are
following a procedure and using an equation that is presented to them for specific cases. Students who
struggle tend to only find the difference between the first and second terms and fail to compare the
differences between subsequent pairs of consecutive terms. This is a consequence of some textbooks
grouping content into discrete sections, each devoted to a single topic. Rather than thinking, a student may
just assume that a given problem is answered by the formulas of the section. The structure of the table will
help students develop the habit of computing many or all of the terms in the difference sequence, as the
difference between subsequent terms is recorded in its own column. Also, including sequences that have no
special forms to be analyzed throughout the unit will reinforce the necessity to compute many terms of a
difference sequence. Discussing a general sequence and its relation to its difference sequence may give
students the tool they need to think more flexibly when analyzing and classifying sequences.

Building an Equation from an Arithmetic Sequence

The following exercise demonstrates how to set up a difference table and use the information provided to
write an explicit equation for an. In my classes, I would first model this procedure with my students using
direct instruction.

Exercise: Consider the first terms in the infinite sequence: 5,7,9,11,13,… . Determine if the sequence is
arithmetic, geometric or neither.

To set up the linear difference table, we begin by writing the terms in the sequence as the output values. We
label the corresponding term number to coincide with each term value.

Input (n) Output (an) Δn = an+1 - an

1 5 7-5=2
2 7 9-7=2
3 9 11-9=2
4 11 13-11=2
5 13

At this point, I would ask my students if they notice anything about our first differences. Since they are all the
same number 2, we can say that the first difference is constant, where the constant Δ=2. I would emphasize
the fact that since the first common difference is constant, we know that this is an arithmetic sequence. Using
this fact, I will express each term of the sequence as a sum of the first term and repeated addition of 2.  

a1 = 5

a2 = 5+2

a3 = 5+2+2

a4 = 5+2+2+2

a5 = 5+2+2+2+2
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…

By expressing each term as a sum of the initial term and repeated addition of the first common difference, we
can make the following observation regarding the number of times we add the common difference:

I would ask my students to consider the relationship between the number of times we add 2 to the first term
and the term number. Here, I would highlight the fact that the number of times we add 2 is exactly one less
than the term number. Next, I would ask my students to conjecture what would happen if we extend the
pattern and try to make the generalization for the nth term in the sequence, which will give us our explicit
equation. This is an area where I expect some students to struggle. To assist students, I would how many
times we are adding the first constant difference to get an. This unknown quantity is indicated by “?” in the
equation.

I may write the additional computations representing the term number directly to the number of times we
multiply 2, as shown below.  Also, this is a good opportunity for students to encounter the idea of variable, a
symbol that stands for a number in some set of numbers. Here the set is the positive integers.
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Applying the observation for the nth term gives us the expansion:

Thus, the sequence 5,7,9,11,13,… can be represented algebraically in terms of n, the term number, as the
equation an = 5+2(n-1). We can also simplify this equation to an = 2n+3. I expect many of my students to be
able to follow along with the procedure, and I would probably model at least two or three examples for the
whole class. For students that understand quickly, I would place students into groups of three or four to work
on analyzing different sequences. Either my co-teacher or I would also be able to work with small groups of
students who needed more guided practice or more examples to show how to write the explicit equations.

The General Linear Sequence

The following exercise demonstrates one way to construct a general explicit equation of a generic arithmetic
sequence. The exercise can be viewed as a proof through an example, allowing students the opportunity to
develop a conceptual understanding of the components of the general equation of a linear sequence. I would
show this example to my students because it is one way of demonstrating where the equation in their
textbook comes from. In the past, students who were given a formula could find an equation, but often could
not explain what information an equation tells us about a sequence.

Exercise: Consider a sequence with first term, a1. Subsequent terms are computed by adding the real number,
∆, to the previous term in the sequence. Write an equation in terms of n, the term number for an, the nth term
in the sequence.

To examine this sequence, we can start by writing out the first few terms.

a1=first term

a2=a1+Δ
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a3=a1+Δ+Δ

a4=a1+Δ+Δ+Δ

a5=a1+Δ+Δ+Δ+Δ

…

an=a1+Δ+Δ+⋯+Δ+Δ

By writing out each term in terms of a1 and Δ, we can use the structure of this list to help us make a
generalization for the nth term in the sequence. Starting with the first five terms of the sequence, we count
the number of times we add the first common difference to the initial term. Using an underbrace, we record
that number for each term. Since we are performing repeated additions of the first common difference, we
can express the repeated addition of Δ as a product of Δ and the number of times it is added in each term.

Observe that, just as in the special example discussed above, the number of Δs we added in each term is
exactly one less than the term number. To highlight this connection, we add one more column of
computations where we rewrite the quantities of Δ. Through extension of the observable patterns, we can
make a generalization for the general term, an.
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This gives us the equation an=a1+Δ(n-1). As mentioned earlier, this is the definition of a linear sequence, as
given in the Larson textbook. I would make the connection between the general case and the various special
examples that my students would have practiced. The ‘only’ difference is, the difference term here is a
variable, Δ, rather than a specific number.

Recursive Equations for Arithmetic Sequences

Using the previous structure we can also deduce a recursive form of the equation. Students in Math 1 should
also be able to represent arithmetic and geometric sequences recursively. Students in the higher level math
classes also work with recursive sequences. In general, we have the equation an = an-1 + Δn-1,  by the definition
of a difference sequence, and constant differences means that Δn-1 = Δ for any n. I would discuss this fact with
my students to show that recursive equations can be written for any sequence if we know a term and its
difference sequence and that the recursive sequence is a special case of the general equation.
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The result is the recursive equation of an arithmetic sequence with first term a1 and nth term an=an-1 Δ, where
Δ is the common difference.

Geometric (Exponential) Sequences

A geometric sequence is characterized by the common (constant) ratio, r. Each term is found by multiplying
the previous term by the common ratio. The structure of the explicit equation of a geometric sequence can be
analyzed using a table in a way similar to the first difference table for arithmetic sequences. To start analyzing
a sequence, the ratio between two consecutive terms is calculated using the definition rn=an+1/an, and then
checking to see if the ratios are constant. Only if the ratios are constant, do we have a geometric sequence. In
my classes, I plan to have students try analyzing examples that are geometric sequences while we study
linear sequences to see what observations and conjectures they make. I would then show them how to find
the ratio between consecutive terms and build an equation as outlined in the following exercise.

Exercise: Consider the sequence 3,6,12,24,48,…. Determine if the sequence is arithmetic, geometric or
neither.

We begin by analyzing the sequence. We can observe that the sequence is not arithmetic because the
difference between two consecutive terms is not constant. For example, ∆1=6-3=3, but  ∆2=12-6=6. Also
∆3=24-12=12. The differences seem to be getting bigger and bigger. At any rate, they are certainly not
constant.

To check if the sequence might be geometric, we compute the ratio between two consecutive terms to find r1,
r2, r3, and r4. The key fact that I would point out to my students is that the ratio is the same value, and that this
feature implies that the sequence is indeed geometric.
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Since the ratio is constant, the sequence is geometric. To build an explicit equation, we can set up a ratio
table for the geometric sequence that is analogous to the difference table used to analyze the arithmetic
sequence.

n an rn

1 3 r1=6/3=2
2 6 r2=12/6=2
3 12 r3=24/12=2
4 24 r4=48/24=2
5 48 …
… …

Using a procedure similar to arithmetic sequences, each term can be written as the product of the first term
and some number of copies of the constant ratio, That is, an is a product of a1 and a power of the common
ratio r.

a1=3

a2=3∙2

a3=3∙2∙2

a4=3∙2∙2∙2

a5=3∙2∙2∙2∙2

…

At this step, I would ask my students to count the number of times we multiply the first term, 3, by the
common ratio, 2. I would then show that we can rewrite each term as a product of a1 with some power of the
common ratio, by using the product property of exponents with the common ratio as the base. This would also
be an opportunity to discussing with your students that the product property of exponents is a consequence of
(a generalized version of) the Associative Rule for multiplication. I would then ask my students to, conjecture
about the number of times we multiply by the common ratio to obtain the an term. Once we know this
quantity, we can write the explicit equation.
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For any term in the sequence, notice the exponent of the common ratio is one less than the term number. This
connection between the term number and the exponent of the common ratio can be made more obvious by
rewriting the exponents asthe term number, minus 1. Note that this process parallels the structure for
arithmetic sequences.

Extending the observations for the first five terms in the sequence, we can generalize the results to the nth



Curriculum Unit 17.05.11 14 of 30

term gives us the equation an=3(2)n-1 representing our geometric sequence. After this example, I may have
some students work with another geometric sequence with the goal of writing an equation. I anticipate some
students will be ready to work independently, while smaller groups of students would work with either myself
or my co-teacher as we go through additional examples.

The General Geometric Sequence

The structure of the process showing how to find an algebraic representation for geometric sequences follows
a structure similar to the method for finding an arithmetic equation. The variable choice in the exercise is
purposely meant to lead to the equation, an=a1(r)(n-1) , which is found in the Big Ideas Integrated curriculum, as
well as other math textbooks. I would demonstrate this example to my students to show where the formula in
their textbook comes from.

Exercise: Suppose we know a sequence is geometric with first term a1 and a constant ratio r. Can we find a
formula for an?

In my classes, I would use the example in the section above, and point out that we can replace the 3 with a1

and the 2 with r. I would make sure to point out that we are able to write the equation because there is a
constant ratio. This would give us the following: 

From this procedure, we have an=a1(r)n-1 .

This is the same formula, which is the definition of a geometric sequence, found in the Larson textbook used
by my students.
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Recursive Equations for Geometric Sequences

We can use the structure to write the recursive form of a geometric sequence. This recursive formula follows
directly from the definition of successive ratio and the condition that it be a fixed number r, if the sequence is
geometric, i.e., the definition of geometric sequence. The main job here is to get students to understand that
this is an immediate consequence of the definitions.

From this procedure, we have a recursive form with first term a1 and nth term an=an-1∙r.

Neither Arithmetic nor Geometric Sequences

When analyzing sequences in Math 1, students are often asked to determine if a sequence is arithmetic,
geometric, or neither. The use of the word neither is meant to say that a sequence is not arithmetic, nor
geometric. However, I often have many of my students interpret the word “neither” to mean none, such that
they believe patterns that are not arithmetic, nor geometric may have no pattern or algebraic representation.
In response to this issue, I would discuss and show my students examples of a variety of sequences that
behave in different ways. For example, the Fibonacci sequence is not arithmetic or geometric, but is defined
by a simple recursive equation. I also know that some students work with this sequence in our introductory
computer science class.

It is not until the Math 2 course that students are shown that there are also sequences that can be modeled
using quadratic expressions. However, in Math 2, the discussion is brief and relies on telling students that a
sequence is quadratic if the second difference is constant. Textbooks show how to find the second difference
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by drawing a diagram,3 and then ask students to write an equation to represent the terms in the quadratic
sequence. Yet, the examples given rely on other properties of quadratics, such as knowing both intercepts, to
find equations. Moreover, the discussion and examples in the text do not provide students with any methods
to find equations for the general quadratic sequence.

Quadratic Sequences

Quadratic sequences are characterized by having a constant second difference. This is often stated as fact in
textbooks. In the curriculum my school uses, there are no explanations as to why a second constant difference
implies we have a quadratic equation. By searching through multiple high school curriculum resources, I have
found that the second common difference is usually presented through examples, and students are told that if
they find a constant second difference, they know they have a quadratic sequence. Though students are
expected to write the equation of a quadratic sequence, many exercises rely on knowing key features of
quadratics, such as the vertex or both intercepts.

Al Cuoco outlines one method to find the equation of a quadratic function in Mathematical Connections.4The
procedures involve taking a quadratic sequence and creating a table that includes an analysis of the first
difference, ∆, and the second difference, ∆∆ which is found by taking the differences of the first differences.
Using this structure as a starting point, and using the skill of creating a first difference table for arithmetic
sequences, an equation can be constructed for any quadratic sequence.

Quadratics are studied in Integrated Math 2 and subsequent math courses. In Math 1, students will have
practiced using both the sequence notation, an, and the function notation, f(n), to represent sequences. For
the purpose of the following example and its place in the mathematics curriculum currently used in my school,
function notation will be used. The following exercises will show that a unique quadratic equation can be
written for a given sequence with constant second differences. In particular, the exercises will demonstrate:

A Quadratic function implies constant second difference.1.
How to reconstruct a quadratic function from its second difference.2.
A constant second difference implies we have a quadratic. This is meant to be an algebraic exploration3.
of quadratic functions that will assist students with understanding how to analyze quadratic sequences
and make generalizations.

The General Quadratic Sequence

There are three ways of connecting a quadratic sequence with its first and second difference sequences:

i) You can compute the coefficients d and e of the first difference sequence dn + e, and the value d of the
second difference sequence, in terms of the coefficients ax2 +bx+c of the orginal sequence, and solve for a, b,
c in terms of d and e, and the first value a+b+c of the sequence.

ii) You can sum the first n (or n-1) terms of the first difference sequence (and add the first value of the
sequence to that sum). This can be done in two ways: iia) geometrically or iib) by formal algebraic
computation.
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In this section, approach (i) will be used to express a quadratic function in terms of its first and second
differences. The next section will show by example how both methods (i) and (iia) can produce the same
quadratic equation. Cuoco utilizes formal algebraic computation in Mathematical Connections, and I will not
use method (iib) as it requires use of combinatorics, which is beyond the scope of the courses for which this
unit is intended.

General Quadratic Equation

The following exercise outlines one process that can be used to analyze a sequence that is quadratic in order
to write an equation in the form ax^2 +bx+c. Though this example uses the general quadratic equation as a
starting point, I would consider starting by examining quadratic number sequences, such as 1, 4, 9, 16, 25, …
before showing this process to my students. 

We begin by considering the standard form of a quadratic equation, f(x)=ax^2 +bx+c, where a,b, and c are
real numbers with a≠0.

First, we evaluate the function for the integers from 1 to n.

f(x)=ax2 +bx+c

f(1)=a(1)2 +b(1)+c=a+b+c

f(2)=a(2)2 +b(2)+c=4a+2b+c

f(3)=a(3)2 +b(3)+c=9a+3b+c

f(4)=a(4)2 +b(4)+c=16a+4b+c

f(5)=a(5)2 +b(5)+c=25a+5b+c

…

f(n-1)=a(n-1)2 +b(n-1)+c=a(n-1)2 +b(n-1)+c

f(n)=a(n)2 +b(n)+c=an2 +bn+c

As a sequence: (a+b+c),(4a+2b+c),(9a+3b+c),…,(an2 +bn+c) 

As a table:

x f(x)=ax2 +bx+c
1 a+b+c
2 4a+2b+c
3 9a+3b+c
4 16a+4b+c
5 25a+5b+c
… …
n-1 a(n-1)2 +b(n-1)+c
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n an2 +bn+c

The next step is to take the first difference, ∆x =f(x+1)-f(x). Note that the first differences in this example use
function notation, whereas the linear example above used the sequence notation Δn =an+1 -a_n.

For x=1,∆1 =f(2)-f(1)

∆1 =(4a+2b+c)-(a+b+c)=3a+b

For x=2,∆2 =f(3)-f(2)

∆2 =(9a+3b+c)-(4a+2b+c)=5a+b

…

For x=n-1,∆n-1 =f(n)-f(n-1)

∆n-1 =f(n)-f(n-1)

=(an2 +bn+c)-(a(n-1)2 +b(n-1)+c)

=an2 +bn+c-a(n-1)2 -b(n-1)-c

=a(n2 -(n-1)2 )+b(n-(n-1))+(c-c)

=a(n2 -(n2 -2n+1))+b(n-n+1))+(c-c)

=a(2n-1)+b(1))+(0)

=(2n-1)a+b.

Adding a column to our table, we record the first differences.

x f(x) ∆x =f(x+1)-f(x)
1 a+b+c ∆1 =3a+b
2 4a+2b+c ∆2 =5a+b
3 9a+3b+c ∆3 =7a+b
4 16a+4b+c ∆4 =9a+b
5 25a+5b+c ∆5 =11a+b
… … …
n-2 a(n-2)2 +b(n-2)+c ∆n-2 =(2n-3)a+b
n-1 a(n-1)2 +b(n-1)+c ∆n-1 =(2n-1)a+b
n an2 +bn+c

All of the steps up to this point were used to determine if a sequence is arithmetic. We notice that the first
difference is not constant. I will ask my students to look at the first differences carefully, and I hope that they
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will be sufficiently comfortable with arithmetic sequences to recognize that this difference sequence is
arithmetic.

Writing the first difference sequence, we have:

3a+b, 5a+b, 7a+b, 9a+b, …, a(2n-3)+b, a(2n-1)+b.

Since we know how to analyze an arithmetic sequence, we use the same process to analyze the first
differences. We will accomplish this by taking the second difference, ∆∆x =∆x+1 -∆x.

For x=1, we have,

∆∆1 =(5a+b)-(3a+b)=5a+b-3a-b

=5a-3a+b-b

=2a.

For x=2,

∆∆2 =(7a+b)-(5a+b)=7a+b-5a-b

=7a-5a+b-b

=2a.

And so on…

Taking x=n-2

∆∆n-2 =(2n-1)a+b-((2n-3)a+b)=2an-a+b-2an+3a-b

=2an-2an-a+3a+b-b

=(2an-2an)+(-a+3a)+(b-b)

=(0)+(2a)+(0)

=2a.

Expanding our table by adding a fourth column, the table is a second difference table for the quadratic.

x f(x) ∆x ∆∆_x
1 a+b+c ∆1 =3a+b 2a
2 4a+2b+c ∆2 =5a+b 2a
3 9a+3b+c ∆3 =7a+b 2a
4 16a+4b+c ∆4 =9a+b 2a
5 25a+5b+c ∆5 =11a+b 2a
… … … …
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n-2 a(n-2)2 +b(n-2)+c ∆n-2= a(2n-3)+b 2a
n-1 a(n-1)2 +b(n-1)+c ∆n-1= a(2n-1)+b
n an2 +bn+c

Observe that ∆∆x =2a for 1≤x≤n.The second difference table shows that a general quadratic, f(x)=ax2 +bx+c
has a constant second difference. This demonstrates condition (1). 

Next, we want to show that a quadratic can be reconstructed from the second difference. Though this
procedure is not shown in the math textbook we use, I definitely plan to show this to my pre-calculus students,
and to my Math 1 students if there is additional time, because it connects the constant second difference and
first difference to the equation of a quadratic. To accomplish this feat, we use the general theorem that a
sequence is determined by its first term and its difference sequence. Applying this twice, we will get our
quadratic.  

Using the information in the second difference table, notice that the second difference is constant. We can
express this relationship in the equation, 2a=∆∆. Solving for a, we have

2a=∆∆

2a/2 = ∆∆/2

a= ∆∆/2.

The result shows us that for a quadratic sequence, the coefficient of the x2 term is equal to half the second
common difference. I would point out to my students that the second difference of a quadratic effects the
vertical stretch of a quadratic because it is twice the leading coefficient.

Since we can find the value for a, we need to find the b and c values. The method is to remove the quadratic
component of the sequence by subtracting the ax2 from each term. Let g(x)=f(x)-ax2 . This gives us

g(x)=f(x)-ax2 =(ax2 +bx+c)-ax2 =bx+c.

By doing so, we have a linear equation g(x)=bx+c. Evaluating this expression for values 1≤x≤n, we can make
a new table, which we will analyze.

x g(x)=f(x)-ax2 =bx+c
1 1b+c
2 2b+c
3 3b+c
4 4b+c
5 5b+c
… …
n-2 b(n-2)"+c
n-1 b(n-1)"+c

From the table above, we will attempt to analyze the values obtained by finding ∆x' , the first difference of
g(x).
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x g(x) ∆x'

1 1b+c (2b+c)-(1b+c)=b
2 2b+c (3b+c)-(2b+c)=b
3 3b+c (4b+c)-(3b+c)=b
4 4b+c (5b+c)-(4b+c)=b
5 5b+c (6b+c)-(5b+c)=b
… …
n-2 b(n-2)+c ((n-1)b+c)-((n-2)b+c)=b

Computing the first difference shows that ∆x' =b for all of the first differences. Thus, the coefficient of the x
term in the quadratic is equal to the first difference of f(x)-ax2 . Since the first difference is constant, we
showed that f(x)-ax2 is linear. At this point, I would expect my students to notice that they have a linear
sequence and would be able to write the general expression c+∆x' .

This shows that f(x)-ax2 =c+∆'x, which we can then solve for c, by subtracting ∆'x from both sides of the
equation. Substituting b for ∆' and ax2 +bx+c for f(x), we have

c=f(x)-ax2 -∆' x

=ax2 +bx+c-ax2 -bx

=c, for all x.

I would point out that a quadratic equation in the form f(x)=ax2 +bx+c can be written for a sequence with
constant second common difference ∆∆ if we follow the three steps:

Step 1: To find a, take a= ∆∆/2.

Step 2: b is the the first common difference, ∆', of the sequence formed by subtracting (∆∆/2)x2 from each
term in the original sequence.

Step 3: We can find the constant value c, by subtracting ((∆∆/2)x2 +∆' x) from any term in

the original sequence.

Though the computations can be tedious, the process is an extension of the difference tables used to analyze
arithmetic/linear sequences. One valuable outcome in going through this process is to emphasize the fact that
quadratic functions are characterized as having a second common difference, which lays the foundation for
calculus and the study of rates of change and derivatives.  In calculus, one could characterize quadratic
functions as those functions with constant second derivative. Another outcome is that there is a way to write
an explicit equation for quadratic sequences, though it does require some work.

Example of a Quadratic Sequence

The Handshake Problem: There is a party. Each person at the party shakes the hand of every other person in
the party. People are unable to shake hands with themselves, and you are not counting multiple handshakes
with the same person. Starting with two people, create a sequence with five terms to show the relationship
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between the number of people at the party and the number of handshakes. Then write a function to
determine the number of handshakes if there are n people at the party.

To start this problem, one approach is to make a table with columns indicated the number of people at the
party and number of handshakes. With two people, persons A and B, at the party, there is only one handshake
possible. If a third person, C, arrives, there will be two additional handshakes as C must shake hands with A
and B, for a cumulative total of 3 handshakes. If a fourth person, D, arrives, the only new handshakes are
between D and each of the three other guests, for a total of 6. If a fifth person E arrives, there are four more
handshakes for a total of 10. Continuing the trend, with each new arrival, the person must shake hands with
those already present. So when a sixth person arrives, there are five more handshakes for a total of 15 and so
on.

Note that this constructing of the handshake function uses an argument based on what its first difference
sequence must be, and adding the differences. This argument shows that the difference sequence is linear
which will allow us to conclude that the original sequence is quadratic because a linear first differences implies
constant second differences.

Number of people # of handshakes
1 0
2 1
3 3
4 6
5 10
6 15
… …

As a starting point, we can compute the first difference using ∆n.

n people # of handshakes ∆n

1 0 1-0=1
2 1 3-1=2
3 3 6-3=3
4 6 10-6=4
5 10 15-10=5
6 15 …
… …

We notice that the first differences are not constant, but appear linear. This sequence could be quadratic, so
we should check to see if there if the second difference is constant. Computing ∆∆n, we extend our table and
observe that the second common difference is constant. Therefore, we will be able to write a quadratic
equation in the form an2 +bn+c for the handshake problem.

Number of people # of handshakes ∆n ∆∆n

1 0 1-0=1 2-1=1
2 1 3-1=2 3-2=1
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3 3 6-3=3 4-3=1
4 6 10-6=4 5-4=1
5 10 15-10=5 …
6 15 …
… …

With ∆∆n =1, we find a by taking a = ∆∆n/2 = ½.

To find the value of b and c, we take our original values for the number of handshakes and subtract (∆∆n/2) n2

= ½n2 from each term.

Number of people # of handshakes - (∆∆n/2) n2

1 0- ½(1)2 =- ½
2 1- ½(2)2 =-1
3 3- ½(3)2 =- 3/2
4 6- ½(4)2 =-2
5 10- ½(5)2 =- 5/2
6 15- ½(6)2 =-3
… …

From these values, we will now compute the first differences, ∆'n.

Number of people # of handshakes - (∆∆n/2) n2 ∆'n

1 0- ½(1)2 =- ½ -1-(-1/2)=-1/2
2 1- ½(2)2 =-1 - 3/2 -(-1)=-1/2
3 3- ½(3)2 =- 3/2 -2-(-3/2)=-1/2
4 6- ½(4)2 =-2 - 5/2 -(-2)=-1/2
5 10- ½(5)2 =- 5/2 -3-(-5/2)=-1/2
6 15- ½(6)2 =-3 …

Since the first difference ∆'n is constant, we know from the explanation above that b=∆'n=-½. We then can find
c using the formula c=f(n)-( ∆∆n/2)n2 -∆'n. For n=1, we have



Curriculum Unit 17.05.11 24 of 30

We can rewrite this equation in the form f(n)= ½(n)(n-1).

This is one way that we can find an algebraic representation for the handshake problem, based on the
structure outlined in the prior example.

Geometric Representation of Handshake Problem

An alternative approach to write an equation that models the handshake problem is represent it geometrically
using a graph. See Figure 1.
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Examining the shape of the geometric function, observe that if we were to copy the exact figure, rotate the
figure 180°, then we could combine the rotated figure and the original one to make a rectangle.
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Observe the resulting rectangle’s horizontal and vertical lengths and their relation to n. See Figure 3. The
horizontal length is equal to n units, while the vertical length is n-1 units. Thus, its area is given by n(n-1). The
total area of the rectangle represents double the number of handshakes.

To get the area of the shaded region, we can take half of the area of the rectangle. The resulting equation can
be written as f(n)= ½ (n)(n-1), which is equivalent to our equation found using the first term, first difference
and second difference sequences. From the handshake problem example, both a computational algebraic
approach and a geometric visual representation produced equivalent equations that modeled the situation.
Interpreting problems in multiple representations will provide opportunities for students to see the
connections between the first and second differences and quadratic equations.
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Throughout this unit, difference sequences will be used to analyze original sequences. Noticing key features
will help students to identify arithmetic, geometric and quadratic sequences. Though they are the three
special cases that are given most of the attention at the high school level, there are many more types of
sequences that do not receive as much attention, but can be explored by analyzing difference sequences.
Starting in the Integrated Math 1 classes, students will develop the tools that can be applied to linear,
exponential, and quadratic functions. At the Math Analysis level, repeated applications of the general theorem
for difference sequences is a tool to analyze polynomial functions. By taking time to understand the roles of
the differences, students will see an alternative approach to write algebraic equations that model numerical
patterns.

Additional Problems

The following are example problems that can be modeled by each of the special cases of problems, or other
types of sequences.

Arithmetic/Linear

1. A bridge railing is to be formed by placing equilateral triangles in a row. Starting with the first triangle, each
subsequent triangle is placed so that it shares one side with the triangle before it. It takes three rods to build
the first triangle, 5 rods to build two triangles, and 7 rods to build three triangles. The contractor wants to find
the number of rods represented by tn, the nth term of the sequence {3,5,7,…, tn}.

2. Some types of bamboo plants can grow 4cm every hour. If one of these bamboo plants is 18cm tall, write
an expression for the height (in cm) of the bamboo after h hours?

3. A decorative railing is to be constructed from sections in the shape of a regular hexagon placed such that
two hexagons share 1 side. Create a sequence for t1 to t10 representing the number of metal rods needed to
build from one to ten sections. Write a rule for tn, the number of metal rods needed to build n sections of
railing.

Geometric/Exponential

4. A rubber ball bounces up half the previous height it fell. If a rubber ball is dropped from a height of 20 feet,
what is the height the ball bounces on the nth bounce?

5. Chain Letter Problem. You send out 7 letters to different people on the first day. On the second day, each of
the 7 people send out 7 more letters to new people. The process continues for several days. How many letters
will be sent on the d-th day?

6. A bacteria cell can divide into two identical cells after 1 minute. Each of the new cells can also divide after 1
more minute. If each cell can divide every minute, how many cells are there after one hour? Write an
expression for the number of bacteria cells after t minutes.

7. A tennis tournament begins with 128 players. After the first round 64 teams remain, After the second found,
32 teams remain. How many teams remain after the third, fourth, and fifth rounds? How many rounds will it
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take before there is a winner? Write a finite sequence that represents the number of teams that have been
eliminated after r rounds of the tennis tournament. What is the domain of r?

Quadratic

8. Diagonals are formed on regular polygons, starting with a three-sided regular polygon or equilateral
triangle. The variable n represents the number of sides in the polygon. Determine the number of diagonals in
a regular polygon with 20 sides. Then determine the equation for the number of diagonals in a regular polygon
of n sides.

9. Round-Robin Tournament (Variation of Handshake Problem). In a round-robin tournament, each team plays
each other team only once. Starting with two teams, create a sequence with five terms to show the
relationship between the number of teams in a round robin tournament and the number of games that need to
be scheduled. Write a function to determine the number of games if there are t teams.

10. Double Round-Robin Tournament. In a double round-robin tournament, each team plays each other team
twice. Starting with two teams, create a sequence with five terms to show the relationship between the
number of teams in a round robin tournament and the number of games that need to be scheduled. Write a
function to determine the number of games if there are t teams.

11. Triple Round-Robin Tournament. In a triple round-robin tournament, each team plays each other team
three times. Starting with two teams, create a sequence with five terms to show the relationship between the
number of teams in a round robin tournament and the number of games that need to be scheduled. Write a
function to determine the number of games if there are t teams.

12. How many regions are there in the plane cut out by n lines in general position (meaning, no two parallel,
no three concurrent)

13. Find the sum of the first n odd positive integers.

Other

14. Partitioning of a Circle Problem. Given a circle, begin with one point on the circle. Add a point on the circle
and draw a chord connecting all points. Count the number of partitioned regions in the circle. Add another
point and draw chords connecting the new point to all existing points on the circle. Again, count the number of
regions partitioned in the circle. Continue the pattern and record the number of partitioned regions.

15. Fibonacci Sequence {1,1,2,3,5,8,….}
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16. Cubed Numbers. {1,8,27,64,…}

Appendix

District Academic Standards

The unit will address the following focus standards and supporting standards for Math 1, as well as standards
from the Integrated Math 2 course. 

ESUHSD Curriculum Unit Focus Standards

Focus standards for this lesson include the following:

F-LEA: Construct and compare linear, quadratic, and exponential models and solve problems

ESUHSD Curriculum Unit Supporting Standards

F-IF-A: Understand the concept of a function and use function notation

F-IF-B: Interpret functions that arise in applications in terms of the context

F-IF-C: Analyze functions using different representations

F-BD-A: Build a function that models a relationship between two quantities (linear & exponential)

Students will be able to understand the use of variables, inequalities, linear equations, and linear inequalities
given a story context and use units as a tool for understanding problems.

I also see the content of this unit being applied to my Math Analysis course, as the first three chapters are
devoted to developing the idea of a function and study of polynomial and exponential functions. With a
stronger understanding of what is a function and how to analyze polynomials, the students will be better
prepared for AP Calculus and AP Statistics.
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