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“Nature uses only the longest threads to weave her patterns, so each small piece of her  fabric
reveals the organization of the entire tapestry” - Richard Feynman

Introduction

The scale of the known universe is truly immense, from quantum level interactions that affect molecular
affinities to collisions of whole galaxies. In fact, even the nucleus of an atom, which is tiny in comparison to
the whole atom, is made of smaller parts, called nucleons, and even the nucleons (protons, neutrons) are
made up of smaller parts. Our humble existence is predicated on these interactions. No other field of science,
besides physics, truly seeks to understand this broad scope of knowledge. As a result, many students struggle
with contextualizing content and the related quantities associated with cosmic energy outputs and extreme
distances in physics. Scientists have utilized the base ten numeral system for hundreds of years to accurately
represent quantities; from the distances between particles in an atom to the energy output of a quasar. This
rather sophisticated but very powerful and simple to use, mathematical tool is often not discussed sufficiently
in the classroom, which creates deficits in areas of scientific notation, unit representation, exponential
arithmetic and significant digits.

The electromagnetic spectrum provides a practical context to integrate the concept of scale, and refine skills
of scientific notation, due to the inherent inverse relationships between wavelength and frequency. The
District of Columbia has adopted the Common Core standards which requires high school students to use
mathematical representations to support a claim regarding relationships among the frequency, wavelength,
and speed of waves traveling in various media (HS-PS4-1). Students continually struggle with articulating
these mathematical relationships, and these difficulties serve as the impetus for this unit. After three years in
DCPS, I am keenly aware of the importance of truly understanding quantities and groups of quantities with
respect to the base unit, implementation of scientific notation, and explorations of scale. All three of these
basic topics are fundamentally important to all STEM fields. This 3-4 week unit seeks to enhance
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understanding of the relation between mathematics and physics through the continual implementation of
scientific notation throughout the year, with a concentrated emphasis on SI units systems. In addition,
students will develop a sense of scale through base ten numeration with the electromagnetic spectrum. The
size of each relevant wavelength will be compared to metric distances to provide a familiar frame of
reference. The culminating work will occur during the months of September to November as well as March;
students will conduct several inquiry investigations (i.e., calculating wave speed in various media and
developing EM spectrum mind maps that depict relationships based in data). It is my hope that this unit will
motivate students to think critically about their physical environment as well as refine their number sense to
provide valuable insight in comparing like quantities in a base ten system.

Demographics

Next year I will begin a new chapter in my teaching career at Woodrow Wilson High School (WWHS) and serve
as the 11th grade academy Physics and Environmental Science teacher. WWHS is a relatively high-performing
school in Washington, DC that consists of approximately 1,800 students. The diverse student body presents
nuance challenges for instructional delivery because of persistent achievement gaps within the school.
Students have historically tested below grade level in mathematics, with only 22% of students meeting
academic expectations. The socioeconomic issues associated with urban schools are still present (i.e., in seat
attendance, classroom behavior, etc.) but to a lesser extent than other schools. The two feeder schools for
WWHS are Deal Middle School and Hardy Middle School which represent two different socioeconomic
populations in DC. The physics department has struggled to remain stable due to high turnover of teachers
and administrators. After three years of teaching in the District of Columbia Public School (DCPS), I have
learned that students respond best to a positive, dynamic classroom, with hands-on activities. The more the
student understands the content’s relevance to their dealings with the world, the more likely they are to gain
a greater depth of knowledge. This unit will challenge students’ notion of scale by introducing base ten
numeration with the electromagnetic spectrum and creating visual representations of mathematical
relationships through the analysis and application of the metric system.  

Content Objectives

This 3 – 4 week unit is designed to elevate high school students’ conceptual understanding of several
interdisciplinary concepts (i.e., scale, units, and scientific notation) by solving problem sets, conducting inquiry
activities using the metric system, and comparing datasets related to wavelength, frequency, and energy. The
unit will begin during the first advisory period (September – November), and then will continue in the third
period (April-March). Topics will follow NGSS standards (see Appendix) as well as DCPS scope and sequence.
The unit is divided into three sections (i.e., base ten implementation/ unit interpretation and comparing
quantities across a spectrum of the powers of ten). The unit has several objectives to assess student growth
including:

Base ten arithmetic and unit interpretation.1.
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Measurement precision, accuracy, and error.2.
Comparing quantities using scientific notation across the EM spectrum.3.

Unit Content

Place Value with the Decimal Numeral System

The universally adopted decimal numeral system powerfully, but nearly invisibly, facilitates our capacity to
compute large and small numbers. Prior to this invention, early civilizations used unique symbols to denote
each order of magnitude, causing rapid proliferation of symbols to represent large quantities. The Roman
numeral system adopted a slightly more elegant system by subtracting or adding numerals depending on the
position of the numeral of greater value. Seven symbols (i.e., I, V, X, L, C, D, and M) represented thousands of
numbers based on this addition and subtraction convention.5 However, the advent of the decimal numeral
positional notation system enabled sequences of the ten Hindu-Arabic symbols (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
for the digits to represent quantities relative to their position within the sequence of digits, with each place
representing a different power of ten. The decimal number system facilitated a scientific and commercial
renaissance in the West due to the efficacy of representing large numbers with fewer symbols and digits. 2
This modern positional notation is often taken for granted in secondary science courses, inhibiting rich
opportunities to make meaningful connections with measurement, scientific notation, relative error, and scale
comparisons. One can compare how the number 643 would be represented in the various numeral systems
and easily observe the compactness of the decimal system with respect to its predecessors. 

Numeral Systems
Roman Numeral Decimal Numeral
DCXLIII 643

Table 1. Depicts how three numeral systems (i.e., Roman, and Decimal) represent the number 643.

We should recall the elaborate structure that gives meaning to the compact form 643. It depends on several
conventions that exploit algebra in clever ways.

Ex: 643

Expanded Form  = 600 + 40 + 3

Second Expanded Form  = (6 × 100) + (4 × 10) + (3 × 1)

Third Expanded Form  = (6 × 10 × 10) + (4 × 10) + (3 × 1)

Polynomial Form = (6 × 102 ) + (4 × 101 ) + (3 × 100 )

The three-digit number 643 consists of various place value pieces, in this case, 600, 40 and 3. Thus, hundreds,
tens, and ones are implicitly signified by the integers in the corresponding sequence. The number can be
decomposed as a sum of in its place value pieces of 600, 40, and 3. Furthermore, each piece can be
expressed as multiples of the base ten units 1, 10 and 100, as shown in the second and third expanded form.
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These forms clearly denote the order of magnitude with respect to the decimal numerals system’s, positional
notation. It should be noted that the place value that 6 represents (hundreds) is a quantity ten times as large
as the place value 4 represents (tens). Likewise, 4 represents a place value ten time as large as the place
value that 3 represents (ones). These terms can be written as a base ten polynomial as shown above. This
process of decomposing a number in expanded forms further reinforces the nuances of the decimal numeral
system, allowing students to grapple with orders of magnitude as it relates to the position of numbers in a
sequence.  

Exercise 1. For the number 643, which digit represents the largest value of the number and why?

As stated above, the number 643 consists of three base-ten place pieces (i.e, 600, 40, and 3). Of the three,
the 6 represents the largest portion of the value since it is positioned furthest to the left in the hundreds
place. The second larger number would be 4 represented four groups of tens and so forth. We note that 600 is
more than 10 times (in fact, 15 times) larger than 40. These size relationships are vitally important for
students to recognize when performing arithmetic operations or interpreting data.

Exercise 2. Calculate the relative value for each digit for the number 643?

643

= 600 + 40 + 3

= 600/643  40/643  3/643

= 0.933 or over 93%  0.062 or about 6%  0.004 or under ½ %

To further articulate the significance of the positional notation system students should calculate the relative
value of digits with respect to a given number. If we reexamine the number 643 and again apply the
associative property of addition we are left with the three corresponding place value pieces of 600, 40 and 3.
To determine the overall percentage each piece represents one must divide by the total value which for this
example is 643. The calculations illustrate that 93% of the number’s total value is represented by 6. This
exercise also highlights the relevance of rounding and significant digits. Based on our computations, 3
represents less than 0.5% of the number, a negligible difference in the overall value of the number.
Understanding these fundamental concepts of place value will be essential with respect to understanding the
metric scale, scientific notation, and scale.

Measurements and Units: Using Base Ten Numeration

The metric system serves as an ideal model for describing a base-ten unit system in a scientific context since
most scientific fields are predicated on the ability to quantify information with SI units. The French were the
first to develop standards for length (metre) and weight (kilogram) and adopt the decimal system which later
developed into the metric system we recognize today. In 1960 the Systeme Inernational d’Unites was
adopted. It established six bases units of measure: the meter, kilogram, second, ampere, degree Kelvin, and
candela; along with sixteen corresponding derived units. 4 The system utilizes prefixes to denote the order of
magnitude with respect to the base unit. For example, a kilogram represents 1000 grams or 103 grams (see
Table 2).



Curriculum Unit 18.04.05 5 of 16

The metric system was developed to be compatible with the decimal numeral system

Prefixes in the Metric System

kilo hecto- deca-
meter
gram
liter

deci- centi- milli-

1,000 times
larger than base
unit

100 times
larger than
base unit

10 times
larger than
base unit

base
units

10 times
smaller than
base unit

100 times
smaller than
base unit

1,000 times smaller
than base unit

103 102 101 100 10-1 10-2 10^-3

10×10×10 10×10 10 1 1/10 1/(10×10) 1/(10×10×10)

Table 2. Illustrates the function of the derived prefixes to denote the order of magnitude for each base unit

Unit Conversion with the metric system

Exercise 3. Desmond brought five weights to the weight room each of which are 10kg. How many
grams did Desmond bring to the weight room?

1 weight (wt) = 10 kilograms (kg)

5weights × 10kg = 50kg (total weight)

1000g = 1kg

50kg × 1000g/kg = 50,000g (total weight)

Or

50kg = 50(1000g) = 50,000g (total weight)

The prefixes kilo indicates three orders of magnitude from the base unit gram; thus, the proportional
relationship of a kilogram to a gram is provided as 1000:1. If a kilogram equates to a thousand grams, and we
have a total of fifty kilograms (five weights each with a weight of 10 kg); we can calculate the total weight in
grams by multiplying 50kg by 1000g/kg. The total amount of weight moved to the weight room is equal to
50,000 grams. This relatively simple exercise will familiarize students with base ten notation with regards to
the various SI units that will be introduced throughout the course of the year.

Exercise 4. The length of a sports car is 4.80 meters. Convert the length to millimeters and
decameters.  

1 millimeter = 1/1000 meter

1 millimeter = 1/ (10 × 10 × 10) meter  or  1 meter = (103 ) millimeters

4.80 meters = 4.80 × (1000 millimeters)

= 4800 millimeters

The prefix milli represents 1/1000 of a base unit thus 1-meter equals 1000 millimeters. Since the length of the
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sports car is 4.80 meters, converting the length from meters to millimeters would increase the numerical
value by three orders of magnitude, resulting in 4800 millimeters.

1 decameter = 10 meters    or  1 meter = (10-1 ) decameters

4.80 meters = 4.80 / ((1/10) decameters)

= (4.80/10) decameters

= 0.48 decameters

Conversely, converting the sports car’s length from meters to decameters would reduce the value by one
order of magnitude, resulting in 0.48 decameters. A decameter consists of 10 meters, and since the car only
measures 4.8 m thus we divide 4.8 m by 10 m.  

Exercise 5. The speed of light in outer space is approximately 300,000,000 meters per second;
however, the speed of sound in air is approximately 1,000,000 times slower. What is the
approximate speed of sound in air?

3 × 108 m/s (speed of light)

÷ 1 × 106

---------------------

3 × 102 m/s (speed of sound)

300,000,000 m/s

÷  1,000,000

---------------------

300 m/s

One could approach this problem by utilizing standard form or by applying scientific notation. The speed of
light is approximated at 300,000,000 m/s or 3 × 108 m/s, and it is estimated to be 1,000,000 or 1 × 106 faster
than the speed of sound. To approximate the speed of sound we must divide 300 million m/s by 1 million,
resulting in approximately 300 m/s or 3 × 102 m/s. It should be noted that the speed of sound is not fixed and
is dependent upon the medium in which sound is traveling through. Although the speed of light remains
relatively constant in the vacuum of space once it interacts with Earth’s atmosphere, this too will affect the
overall speed of light. This problem is assuming ideal conditions to simplify the arithmetic calculations.
Alternatively, students could calculate the speed of sound travelling through liquid or a solid and compare it to
the speed of light. In addition, students could estimate the relative distance of lighting using the relative
speed of sound to light ratio. During a thunderstorm, one first observes the flash of lightning followed by
thunder. Since sound waves travel roughly at 300 m/s in air at sea level one could estimate the relative
distance of the lighting by counting by one one-thousand, two-one-thousand and so forth until the sound wave
was heard. At three seconds the sound wave would have traveled roughly 900 m or approximately 1 km. This
extension activity would provide a real-world application to estimation with respect to wave speed. This
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method is accurate to within ten percent due to the uncertainty associated with the speed of sound, but
students will assess if this is acceptable in the framework of estimating distance.

These relatively simplistic base-ten problems highlight major deficits and misconceptions that my students
have in working with the metric system, namely the arithmetic operations involved with powers and
exponents. Throughout the year students will refine and familiarize their understanding of base-ten operations
with problem sets and inquiry labs. Students often fail to recognize the inherent patterns within the metric
system with respect to orders of magnitude and thus find it difficult to explain concepts involving large and
small quantities. 

Measurements: Precision and Accuracy with Scientific Notation

The cubit, used by ancient civilizations along the Nile delta, is the earliest known unit to measure length. A
cubit consisted of the length of a forearm from elbow to the tip of the middle finger.2 The grain was
established to measure the mass of objects, often in conjunction with precious metals to determine overall
value in commerce. The standards for cubit and grain varied regionally, creating ambiguity among empires.
However, with gradual refinement and the incorporation of base-ten numerical systems, the scientific
community adopted the SI system as the standard units of measure in 1960.4 The iterative refinement of
place value has allowed science to communicate quantitative measurements more effectively. The adoption of
the SI systems established a total of seven base quantities including; length, mass, time, electric current,
temperature, amount of substance, and luminous intensity (Table 3).

SI Base Units
Base Quantity Name Symbol
Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

Table 3. Lists seven of the base quantities established in 1960 from the international system of units.

The act of measuring is one of the fundamental skills in any scientific discipline, as the nature of science relies
upon the ability to test ideas quantitatively. The accuracy and precision of measurements depends on the
available scientific equipment and thoroughness of the investigator. It is imperative to know the limits of one’s
ability to report quantities when using scientific notation and significant digits.

Figure 1. Illustrates the possible instrumental error of using a 100 cm ruler when quantifying the length of
objects A, B, and C.
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Exercise 6. What is the length of the objects in Figure 1? Justify your answer.

Sample Solution: Reading off the lengths from the ruler below the colored bars, we can verify that

Object A ≈ 70 cm

Object B = 50 cm

Object C ≈ 30 cm

Instrument error, relative error

The 100 cm ruler is subdivided into ten equal intervals of 10 cm, limiting the overall precision of
measurements to the nearest tens. The objects in question do not all align to the subdivision of units and thus
must be rounded to approximate the lengths leading to an error up to ± 5cm. If the true length of object A
was 73.0 cm then the relative error would equate to 4.1% (see below).

Object A = 73.0 cm (Actual value)

Object A = 70 cm (Measured)

73.0 cm – 70 cm = 3.0 cm

3 cm / 73 cm = 0.04109

(0.04109)(100) ≈ 4%

To determine the relative error, one must divide the absolute error, the difference between the actual value
and the measured value, by the actual value. If the actual value of object A equates to 73 cm and the
measured value rounded to the nearest tens at 70 cm then our absolute error would equate to 3 cm. The
absolute error divided by the actual value results in the relative error between the two quantities. 

27.0 cm – 30 cm = 3.0 cm

3 cm / 27 cm = 0.11111

(0.11111)(100) ≈ 11%

Similarly, we can perform a similar computation with respect to length C and determine the relative error
associated with this measurement. The relative error associated with 30cm is significantly larger since 3cm
represents a larger proportion of the overall value, as such the relative error associated with rounding equates
to 11%.

Significant figures and Estimation

The number of digits reported in a measurement reflects the precision or accuracy with which the quantity in
question is known. Students are often tempted to exceed the limit of instrumental precision by estimating
within the labeled subdivision. For example, one might expect 28.0 cm for object C and 73.0 cm for object A,
while uncertainty lies within ± 5cm. These values exceed the limit of precision by two orders of magnitude
and should be discussed openly. If the intervals of the 100 cm ruler were subdivided into 100 equal intervals
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of 1 cm, then reporting 28 cm for object C would be appropriate. However, the limits of our scientific
instrument are to the nearest tens, and because of this, all measurements should be rounded to the nearest
tens. Object C is greater than 20 cm and slightly less than 30 cm, as a result the object would be
approximately 30 cm in length. Similarly, object A is slightly greater than 70 cm and significantly less than 80
cm, rounding to 70 cm in length. These practices become more important when measuring quantities with
greater precision.

Scientific Notation

The origin of scientific notation began with Archimedes, a prolific mathematician and inventor from Greece
who, among many other works, attempted to estimate the number of grains of sand on all the beaches of the
whole world. 2 However, our modern system of scientific notation is largely attributed to Rene Descartes, who
was the first mathematician to use the Hindu-Arabic numerals as exponents. The standard form of scientific
notation is depicted below.

m × 10n

where m represents a decimal number between 1 and 10; m is called the coefficient. This coefficient exhibits
the overall precision of the quantity. It should only contain digits that are confidently known; these are called
significant digits. The second component of scientific notation, n, denotes the number of digits or orders of
magnitude of base ten. It is important to remember the m must be a decimal number between 1 and 10 for
scientific notation. Scientists regularly employ scientific notation, since it clearly indicates the key features
that they want to know about a number: it size (with the exponent n), and its accuracy (with the coefficient,
and specifically, with the number of decimal places in the coefficient).

If we refer to our previous discussion of the various lengths of objects we would note that all measurements
are only one order of magnitude of 10 with very limited precision, resulting in the following measurements,
written in scientific notation. It is important to note that zeros which are reported with the coefficient in
scientific notation are considered significant; meaning that the degree of certainty is at least two orders of
magnitude. This is equivalent to estimating between the subdivisions of the ruler, which was previously
discussed.

7 × 101 cm ≠ 7.0 × 101 cm  1.
5 × 101 cm ≠ 5.0 × 101 cm2.
3 × 101 cm ≠ 3.0 × 101 cm  3.

Exercise 7. Compare the mass of the Jupiter with the mass of the earth.

1.89 × 1027 kg = Jupiter  or   1,890,000,000,000,000,000,000,000,000 kg

5.97 × 1024 kg = Earth 5,970,000,000,000,000,000,000,000 kg

Sample solution:   

Step 1: Divide the coefficients

1.89 ÷ 5.97 = 0.317
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Step 2: Subtract exponent in the denominator from the exponent in the numerator

(1027 ) / (1024 ) = 1027-24 = 103

Step 3: Combine the resulting coefficient with the new power of ten

0.317 × 103

3.17 × 102   or   317 times the size of the earth

This scientific notation problem can be broken into three steps. First, divide the coefficients of Jupiter and
Earth, as shown above. Next, subtract their exponents through the application of the quotient rule, (1027

)/(1024 ) = 1027-24 = 103 . Finally combine the results, to get 0.317 × 103 and then convert this to scientific
notation. To do this, move the decimal point to produce a coefficient between 1 and 10 (so 0.317 -> 3.17),
and change the exponent to compensate (so 3 -> 2). Thus, the result is purely 3.17 × 102 or 317 times the
mass of earth since the units are canceled when dividing. The initial measurements indicate an accuracy of
three significant digits, which should also be reflected in our result.

Analyzing Scale along the Electromagnetic Spectrum

The electromagnetic spectrum spans nearly twenty-four orders of magnitude, from high energy gamma rays
with a wavelength less than a nanometer to mile-long radio waves carrying signals for communication. 
Understanding base-ten and scientific notation is imperative prior to analysis.

Figure 2. Depicts the electromagnetic (EM) spectrum with respect to relative frequency and wavelength. The
classification of each EM wave spans varying degrees of magnitude with the visible spectrum spanning less
one order of magnitude and radio waves spanning 8.

The electromagnetic spectrum (EM) is arranged along a logarithmic spectrum which allows for opportunity to
discuss the difference between geometric means (GM) and arithmetic means (AM) in relation to types of wave.
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The geometric mean between two numbers, x and y, is equal to the square root of the product, √xy. Given
that the wavelengths along the EM spectrum are already expressed in scientific notation the geometric mean
would require the multiplication of the minimum and maximum range. Since the square root is inversely
related to exponential functions, the sum of the powers of ten is divided by two to get the geometric mean, as
shown above. The logarithmic scale of the EM spectrum effectively transforms the geometric mean into the
arithmetic mean. The geometric mean can be thought of as the “multiplicative average” whereby GM(x, y)/y
= x/GM(x.y), just as AM(x,y) – y = x – AM(x,y). The relevance of the geometric mean may be beyond the scope
of the classroom but could be included if opportunity should arise.

Exercise 8. Broadly compare the wavelengths of the visible spectrum to radio waves using the
logarithmic scale. What inferences can be made from the range in which both EM waves occupy?
Justify your answer.

From the electromagnetic spectrum diagram we read off the following ranges:

Visible Light: 4 × 10-7 (400 nm) to 7 × 10-7 (700 nm)

Radio Wave:  1 × 100 (1 m) to 1 × 105 (100 km)

According to the logarithmic scale from the EM spectrum radio waves are 1 × 107 to 1 × 1015 m. Taking 5x10-7

as the typical light wave, 1 meter is 2x106 times as long, and 105 meters is 2x1011 as long. The EM waves that
encompass the EM spectrum span varying ranges and thus varying orders of magnitude. Radio waves in the
broad sense include FM, AM, and long radio waves which range in five orders of magnitude in wavelength,
from 1 m to 100 km. Conversely, visible light is restricted to less than ¼ order of magnitude in wavelength,
from 400 nm to 700 nm.

Wavelength, frequency, and energy are closely linked. Radio waves carry communication information over
varying distances and mediums, thus occupying a wide range within the electromagnetic spectrum. However,
visible light requires a specific energy bandwidth whereby some frequencies are reflected and absorbed from
objects. In addition, these frequencies must carry energy high enough to interact with organic matter, but low
enough not to destroy it, as our rods and cones would be destroyed. Providing context to the relative
application for each EM wave will allow students to recognize patterns among wavelength, frequency, and
energy. For this exercise however we will only be comparing EM waves with regards to wavelength size.

Exercise 8. Compare the frequencies of X rays to microwaves using scientific notation. What
conclusions can be drawn? Justify your answer.

Again reading from the spectrum diagram, we find the following ranges:

X-Ray: (1 × 10-8 ) m to (1 × 10-11 ) m

Microwaves: (1 × 100 ) m to (1 × 10-3 ) m

Calculating Geometric Means

X-Ray: (1 × 10-8 ) to (1 × 10-11 )

√(1 × 10-8 )(1 × 10-11 )
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√1 × 10(-8)+(-11)

√(1 × 10-19 )

≈ 1 × 10-9.5

Microwave: (1 × 100 ) to (1 × 10-3 )

√(1 × 100 )(1 × 10-3 )

√1 × 10(0)+(-3)

√(1 × 10-3 )

≈ 1 × 10-1.5

Comparing EM Wavelengths with Scientific Notation

X-Ray: (1 × 10-9.5 ) m

Microwaves: (1 × 10-1.5 ) m

(1 × 10-9.5 ) m

÷(1 × 10-1.5 ) m

-------------------

Step 1: Divide the coefficients

1 ÷ 1 = 1

Step 2: Subtract exponent in the denominator from the exponent in the numerator

(10-9.5 )/(10-1.5 )= 10-9.5-(-1.5) = 10-7

Step 3: Combine the resulting coefficient with the new power of ten

1 × 10-7

To estimate the relative difference in wavelength between X-rays and microwaves we must apply the
geometric means between the ranges of the two EM waves as estimates (see above). As previously discussed,
the geometric mean can be thought of as the multiplicative average between a set of numbers. However,
since the EM spectrum falls along a logarithmic scale the geometric mean is essentially the arithmetic mean
with regards to the exponents. This problem is relatively complex due to the extreme nature of the order of
magnitudes and our understanding of geometric means. However, if we reduce this calculation into two parts,
decimal digit division and subtracting the exponents by applying the quotient rule, it becomes more
manageable for students. In the first step we divide the decimal digits of 1 m by 1 m, resulting in 1. Next, we
apply the quotient rule to determine the overall magnitude difference of 10-7 . Combining both calculations
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results in the value of 1 × 10-7 , thus an x-ray is on average seven factors of 10 smaller than a microwave. In
this case, since the two types both span 3 orders of frequency/wavelength magnitude, if you compare longest
to longest, you will get a factor of 107 , and the same with shortest to shortest.

Arithmetic Awareness

This unit is structured to enrich physics content by elucidating patterns inherent within the decimal numeral
system. In other words, physics content will remain the driving force throughout the year, but intentional
activities will be strategically placed to blend mathematics into the foreground whereby students will critically
examine arithmetic operations. A major deficit with many students is the lack of arithmetic awareness, which
comes from not asking a simple question: “Why?” At the beginning of the year we will analyze the significance
and usefulness of decomposing a number into its place value constituents, as discussed above, and will begin
discussing the importance of units. It is my hope that this will provide greater context to the problem sets and
labs performed throughout the year. The measurement lab will be performed early in the year to address
misconceptions associated with precision, significant digits, and relative error. Understanding the
fundamentals of base-ten will become vital with the introduction SI units and the metric system. To promote
my students’ grasp of these ideas, a considerable amount of time will be spent converting units with open
discussions in small groups. Ultimately, the goal is to create a classroom culture that fosters insight about
arithmetic operations. By the third advisory, students will be asked to apply these principles to the EM
spectrum and critically analyze the various EM waves in terms of a logarithmic scale.  

Teaching Strategies

Station Rotations and Small Groups

Station rotation facilitates the engagements of students by rotating students through several concurrent
activities throughout the class period or week, depending on the model. This instructional strategy allows
students multiple opportunities to refine conceptual understanding and mastery by participating in activities
that target various modes of learning (e.g., kinesthetic, auditory, visual). Students will spend approximately 20
minutes working independently or in groups on activities. As a class, students will share findings,
observations, and misconceptions that persist. These open discussions will provide a framework for peer
evaluation and allow students to guide topics.

The unit will be interspersed between the first advisory (September-November) and third advisory (April-
March) with cooperative learning in heterogenous groups. Stations will consist of students at various mastery
levels to foster leadership roles within the classroom (i.e, timekeeper, recorder, reporter, analyst). Students
will apply, and practice concepts introduced during the first half of class. The number of stations may vary
based on the number of students and classroom dynamics, however this pedagogical model is designed to
foster independence, communication, and accountability among the students. In addition, student rotations
will enable differentiation among groups to ensure that content mastery is achievable.

Inquiry Activities and Lab

As a science, physics offers a plethora of opportunities for students to apply mathematical concepts and refine
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arithmetic skills when describing physical phenomena. Student engagement and content mastery is
dramatically increased with hands-on activities, as many of my students are visual and kinesthetic learners.
This unit will seek to strengthen students’ content mastery of base-ten arithmetic and the nuances associated
with measurement error and units. Students will be asked to participate in several measurement activities to
elicit misconceptions associated with comparing quantities in scientific notation as well as examining
instrumental error. To grapple with logarithmic scales, students will create a base ten scale with a minimum of
six orders of magnitude for examining the size of objects, where ultimately, they will be able to infer patterns
in the EM spectrum. Ultimately, the inquiry activities and hands-on labs are aimed to foster memorable
learning experiences. In addition, the labs will allow a closer examination of the arithmetic operations that are
essential to many topics within physics (scientific notation, relative error).

Pre-Assessment and Post-Assessment

A pre-assessment will be administered prior to the unit to establish baseline data of students’ capabilities and
content knowledge. Questions will consist of a selection from the district’s standardized test (PARCC) as well
as foundational arithmetic base-ten questions related to measurement. Students will be asked to interpret
graphs and data as well as estimate large and small quantities using scientific notation. Data will be compiled
from last year’s PARCC assessment to determine overall academic performance. Students will be assigned
problem sets that will gradually challenge their skill level, and will be arranged in heterogenous groups. Each
problem set will consist of five to six questions that will begin with simple arithmetic questions and end with
problems that require a multi-step solution. These problem sets with serve as informal assessments and
facilitate discussion for station rotations. Students should be able to articulate their attempt at a problem and
will be required to record every step. Our district focuses on data-driven results and it is my hope that these
assessment metrics will demonstrate the overall effectiveness of this unit.

Classroom Activities

Creating a Base-Ten Scale

Students will create a customized base-ten scale using their age (i.e., days, months, or years) as a base unit
and make comparisons along six orders of magnitude. For example, a student that is 16-year-old would have a
base unit of 16 and would provide three temporal examples of increasing magnitude (160, 1,600 and 16,000
years) and three of decreasing magnitude (1.6, 0.16 and .016 years).3 This inquiry-based activity will allow
students to compare quantities using scientific notation and refine their base-ten arithmetic. In addition, this
activity will provide a temporal context that will enable students to grasp orders of magnitude. The base-ten
scale will be peer evaluated using a rubric with a gallery walk.

Measuring lengths with variance / Decomposition of a meter

The ability to accurately measure and report precise quantities is a skill that is fundamental to all disciplines of
science, especially physics. Students will participate in a series of measurement labs that will examine base-
ten in relation to the metric system and practice measuring objects of various lengths. Groups will be given an
assortment of objects with rulers at different levels of precisions and accurately report lengths in scientific
notation. Each group will have the same objects with different instruments of precision; some may have a
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ruler with inches others, a ruler with centimeters or millimeters. Students will share their results and discuss
possible errors that may have arisen due to instrumental error. In addition, students will perform unit
conversions to determine how accurate each group’s measurement was, relative to their own. These inquiry
investigations will elicit discussions on the importance of measuring in relation to relative error and rounding.

Comparing orders of magnitude in the electromagnetic spectrum

During the third advisory students will compare EM waves along the logarithmic scale, investigating patterns
in wavelength, frequency, and energy. Comparisons will be made broadly, examining the overall range with
each type of EM wave. In addition, students will take the geometric mean of the upper and lower limits of
wavelength for each type of EM wave and compare different parts of the spectrum to more precisely
determine differences in the order of magnitude of wavelengths for these different types of radiation.
Inferences will be made about energetics for each EM wave and their application.  

Appendix

Standards

The unit will incorporate standards from the Next Generation Science Standards (NGSS) as well as common
core high school mathematics.1 During the first advisory students will grapple with SI units with regards to
kinematics and use units to guide in solving for multi-step conversion problem sets
(CCSS.MATH.CONTENT.HSN.Q.A1). Students will then explore base-ten numeration utilizing scientific notation
by creating a logarithmic scale with their age as a base unit. Student will calculate how many mega seconds
old they are when they reach a billion, to further provide context about scale. The culminating activity will
have students analyze the EM spectrum to elicit patterns with regards to wavelength and frequency (HS-
PS4-1).1 A fundamental understanding of exponents will be paramount to recognizing patterns within the EM
spectrum as such a considerable amount of time will focus on arithmetic operations involving exponents, in
the form of scientific notation problem sets. 
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