Green Chemistry

CONTENTS OF CURRICULUM UNIT 09.05.08

  1. Unit Guide
  1. Introduction
  2. Objectives
  3. Strategies
  4. Activities
  5. Appendix A
  6. Endnotes

What's Your Green Bottom Line? The Truth About What We Leave Behind

Kathryn Lee Kinsman

Published September 2009

Tools for this Unit:

Objectives

Overview

Some of the greatest threats to future resources come from the things we throw away everyday. Throwing away items that could be recycled diminishes energy, water and natural resources that could be saved by recycling or reusing.

Fossil fuels present a challenge to the pursuit of a completely sustainable and "green" energy policy. While moving to sustainable fuels is an important step in combating the energy crisis, fossil fuels will continue to be a necessary part of people's lives around the world. So what can we do as individuals to help extend our current supply of fuel while sustainable power catches up? How can we increase the advocacy of a sustainable society when most people are habitual and already "set in their ways"? These are the main objectives I would like to explore throughout this unit, What's Your Green Bottom Line? The Truth About What We Leave Behind. I would like to see my students shift their focus away from the cheap and disposable and towards more high quality products that are built to last and that create little or no waste. High quality, long-lasting products cost a bit more up-front, but they'll save money in the long run.

Rationale

Approximately 35 people move to Charlotte every day. The district that I teach in, Charlotte-Mecklenburg Schools (CMS), grows by approximately 4,000 students per year! We are one of the largest school districts in the nation! My school is one of 173 in the CMS District that encompasses more than 133,000 students in grades K-12. They come from all different ethnic backgrounds, all different types of families, and are at all different levels of physical and academic ability. Nearly half of the students in the district qualify for free or reduced lunch, which is the federal standard for measuring poverty. We are home to students who are from 151 countries, and speak 120 different languages. According to my district's website, approximately 42% are African-American, 35% are Caucasian/White, 15% are Hispanic/Latino, 4% are Asian-American, and 4% are American Indian/Multiracial (Charlotte Mecklenburg Schools 4). These statistics only reflect the tip of the iceberg when it comes to diversity, as each of those groups contains many socioeconomic, cultural, ethnic, special-needs and religious subgroups.

I teach regular and honors Earth and Environmental Science at East Mecklenburg High School in Charlotte, North Carolina. At East, my classroom is quite diverse not only because of my students' demographics, but also in age and academic ability. Most students follow a block schedule consisting of four 90-minute classes. Even as a 7 th year teacher, at times I struggle to hold my students' attention for that amount of time. In addition, when it comes for the environmental studies section of my course, I often find students already know the basics of recycling and caring for the planet, and they don't really want to learn anything more. They do not even practice what they already know!

Albert Einstein once said, "Education is what remains after one has forgotten everything he learned in school." My high school students might forget the detailed facts about climate change and plastics sooner or later; however, it is my hope, as I introduce powerful issues regarding the world of environmental climate justice, that this new knowledge will last a lifetime.

Climate change, also commonly classified nowadays as global warming, is not the only environmental issue of importance, but it definitely has become somewhat of a celebrity amongst its counterparts, probably thanks to Al Gore's 2006 documentary film, An Inconvenient Truth: A Global Warning. Even Robert Redford will be screening seven environmentally themed films at his Sundance Film Festival as part of the large program of films this year! I believe the reason we are seeing so much "green" on the screen, is because, climate change affects us in so many ways, not just with weather. It affects us culturally, socially and economically according to internationally acclaimed scientist, explorer, conservationist and Australian, Tim Flannery (2005 5). Even though all the hype about "going green" has been out for a while, I've noticed many people, especially my high school students, have been impervious to it and have continued their excessive standard of living. I believe our younger generations should be extremely conscious of how their daily habits effect the environment. I would like to change their way of thinking. President and CEO of the World Wildlife Fund in Canada, Mike Russill, said that, "To win (against global warming) will take vision and courage, small steps and giant strides by businesses, governments and individuals. Each must believe that the fight is winnable…and that we do not have to dramatically change the way we live!" (Noble 2007 6)

While it's easy to get overwhelmed with thinking "green", it's also simple to begin making a positive impact. I showed the movie, The Day After Tomorrow, (2004 film looking at what the world would look like if the greenhouse effect and global warming continued at such levels that they resulted in worldwide catastrophe and disaster; including multiple hurricanes, tornadoes, tidal waves, floods and the beginning of the next Ice Age) to my Earth and Environmental Science class and posed the post-viewing discussion question: "Do you think this type of film could scare people into at least thinking about the environment or the issue of global warming and then actually doing something about it?" The answers I received were astonishing:

  • "I know global warming is bad, but nobody cares about what they do. If I didn't live in a city, maybe I would learn how to save electricity and stuff more. Most kids only think about themselves and want to follow the people on TV and if Lil'Wayne ain't doing it, neither are they."
  • "When it comes to the environment, doing something about it is optional. People won't take it seriously because there are no laws stating they have to recycle and stuff like that."
  • "Some people could care less about the things that are occurring, all they want to do is just live life and live lazy 'cause it's easier. Recycling doesn't cost any money and it is very easy, but they still don't do it, maybe they think there is no way all of us could destroy a planet this big."
  • "If the government offered incentives maybe more people would be more willing to recycle because not everyone listens to commercials and programs about saving the Earth. We hear it all the time, but we think it's not for us."
  • "I think one way to make lazy people recycle and stuff is to show them what could happen if we don't."

All my students are aware of the current campaign for a greener environment. However, the vast majority of them just aren't concerned with making necessary changes to live a greener lifestyle. I know what my green bottom line is, and its not that great, despite the knowledge I have. So how can I change the habits of a much younger, more eccentric-alternative generation if it's hard for me sometimes?

With a million green messages and ideas coming at us from all sides - in the news, politics, technology, even fashion, it can be easy to get caught up in the run of the mill lifestyle changes - turning down the thermostat, carpooling, turning the water off when brushing your teeth, recycling…without thinking about the big picture of whether your actions are truly worthwhile. You might even be suffering from a little green fatigue, and tuning out the green messages because they are so ubiquitous. As mentioned before, it is easy to get overwhelmed, so it will be helpful to understand the big picture when it comes to setting smaller personal goals.

So here it is, the BIG picture. According to the U.S. Census Bureau the world population is expanding at a mind-boggling rate. I display a surprising graph to my students that shows the world reached 1 billion people in the year 1800; 2 billion by 1922; and over 6 billion by 2000. It is estimated that the population will swell to over 9 billion by 2050. That means that if the world's natural resources were evenly distributed, people in 2050 will only have 25% of the resources per capita that people in 1950 had (United States Census Bureau 7).

"What do I care?" yells a student in my class.

"Yeah, it's not my problem!" shouts another in response.

I go on to explain that the world has a fixed amount of natural resources - some of which are already depleted. The more people we have on Earth, the more resources we are using up and the fewer we will have available in the future. Usually the same students shout out their previous comments. Then I ask them if they intend to get married and have children, maybe even grandchildren one day. Now their interest has been sparked…its gotten personal. So, I continue to state that if we intend to leave our children and grandchildren with the same standard of living we have enjoyed, we must preserve the foundation of that standard of living. I really perk their interest when I bring money into the conversation.

I'll ask, "How many of you save your money to buy clothes, jewelry, food, phones, and iPods ?" Pretty much the entire class raises their hands.

"But what about saving clean air, water, fuel sources and soil for future generations? Do you save for that?" All hands are down.

Here is where my conversation must shift from its original script because at almost an instant, by speaking about saving the planet, I've lost their attention again. I will need to share pertinent, real-life proof of the damage that is done by living conveniently.

As WE burn more fossil fuel for energy, WE add more carbon dioxide to the atmosphere due to the presence of certain "greenhouse gases" that trap heat, like carbon dioxide, methane, water vapor, and chlorofluorocarbons (CFC's). The Earth's atmosphere retains the sun's radiation and warms up the planet. By increasing the abundance of these gases in the atmosphere, humankind is increasing the overall warming of the Earth's surface and the lower atmosphere, a process called "global warming". How do we know for sure? The rise of carbon dioxide in the atmosphere is readily documented by direct measurements (i.e. the "Keeling" curve - which depicts the inexorable rise of carbon dioxide in the atmosphere since 1957, with its annual variations superimposed on the accelerating trend of increase) and by the results of ice core studies from the polar-regions (University of California at San Diego 8).

WHO is climate change affecting the most? If I want to make my students truly understand this issue, I've got to not only have them explore the proof, but also make it personal. Global warming, or climate change, is fundamentally an issue of human rights and environmental justice. According to the Environmental Justice and Climate Change (EJCC) Website 9, human lives, particularly in people of color, low-income, and indigenous communities, are affected by compromised health, financial burdens, and social and cultural disruptions. These communities are the first to experience the negative impacts of climate change such as heat-related illness and death, respiratory illness, infectious diseases, unaffordable rises in energy costs, and extreme natural disasters.

The EJCC is a diverse coalition of advocacy networks working for climate justice. Climate justice is a form of environmental justice, and is the fair treatment of all people and freedom from discrimination with the creation of policies and projects that address climate change and the systems that create climate change and perpetuate discrimination (EJCC). Through this initiative and ones similar to it, my students will be connected with thousands of people in communities, just like theirs, across the country and learn about not only the effects of climate change and environmental injustice, but also the vision to dissolve and alleviate the unequal burdens created by climate change. They will be empowered in the classroom in hopes that they will become active for change in their community.

Background Information

Chemistry is called the "central science" because it is in EVERYTHING we use! Green chemistry, also known as sustainable chemistry, is the design of chemical products and processes that reduce or eliminate the use or generation of hazardous substances. Green chemistry applies across the life cycle, including the design, manufacture, and use of a chemical product (United States Environmental Protection Agency 1 0). In short, it is a totally efficient, benign chemistry practice. Paul Anastas is known as the "Father of Green Chemistry". Recently, President Barack Obama confirmed the appointment of Anastas to be the Assistant Administrator for Office of Research and Development with the Environmental Protection Agency (The White House 11). I am positive with Anastas in such a vital role, he will lead the government and the president on a much "greener" track with regards to changing our environmental future. This means businesses will eventually have to adhere to his green chemistry principles and individuals will need to make greener choices everyday. It will be a great and necessary collaboration.

Anastas said, "Climate change is energy, energy is water, water is chemistry. Everything that you touch breathe, drink, eat… is CHEMISTRY!" He also empathetically stated, "Many people have been doing the right things wrong," such as purifying water with acutely lethal substances; precious rare toxic metals used in photovoltaic cells; agricultural crop efficiency from persistent pesticides; compact fluorescent bulbs based on mercury; and electricity and power from fossil fuel plants. He goes on to say that, "As we (chemists especially) accumulate more knowledge, we adjust our processes and we can't pretend we don't have the knowledge." What Anastas means is once we have gained new knowledge (about chemistry especially), we shouldn't be making the same mistakes and poor choices with it time and again. We have far more knowledge on how to design products on a molecular level that are far better than what we've done in the past.

Green Chemistry is a highly effective approach to pollution prevention because it applies innovative scientific solutions to real-world environmental situations. The 12 Principles of Green Chemistry provide a road map for chemists to implement green chemistry. They are:

  1. It is better to prevent waste than to treat or clean up waste after it is formed.
  2. Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product.
  3. Wherever practicable, synthetic methodologies should be designed to use and generate substances that possess little or no toxicity to human health and the environment.
  4. Chemical products should be designed to preserve efficacy of function while reducing toxicity.
  5. The use of auxiliary substances (i.e. solvents, separation agents, etc.) should be made unnecessary wherever possible and, innocuous when used.
  6. Energy requirements should be recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure.
  7. A raw material of feedstock should be renewable rather than depleting wherever technically and economically practicable.
  8. Unnecessary derivatization (blocking group, protection/deprotection, temporary modification of physical/chemical processes) should be avoided whenever possible.
  9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents.
  10. Chemical products should be designed so that at the end of their function they do not persist in the environment and break down into innocuous degradation products.
  11. Analytical methodologies need to be further developed to allow for real-time, in-process monitoring and control prior to the formation of hazardous substances.
  12. Substances and the form of a substance used in a chemical process should be chosen so as to minimize the potential for chemical accidents, including releases, explosions, and fires.

This unit will focus on just 2 of the 12 green chemistry principals. The first is #1: It is better to prevent waste than to treat or clean up waste after it is formed. When manufacturing and using chemicals, it is expected that there are standard costs involved. However, the cost of treatment and disposal of chemical substances has increased substantially (Anastas and Warner 1998, 31 12). The only way to prevent continual increases in costs is to "avoid the use or generation of hazardous substances by designing chemistry through the use of green chemistry techniques" (Anastas and Warner 1998, 31). In summation, preventing a problem is superior to trying to solve the problem once it has been created.

The second green chemistry principle this unit will focus on is #10: Chemical products should be designed so that at the end of their function they do not persist in the environment and break down into innocuous degradation products. A major concern with some chemicals is that they are persistent. Meaning, once they are released in to the environment, they remain in the same form. They can also be taken up into various plant and animal species and accumulate in their systems (Anastas and Warner 1998, 51). This is called bioaccumulation and is often harmful to the species.

With regards to the issue of persistent bioaccumulators, the green chemistry considerations would be to address the disposition of the substance after its function is completed as well as designing the substance to achieve its primary function (Anastas and Warner 1998, 52). For example, a plastic garbage bag needs to be designed so that it does not remain a plastic bag after it is used and thrown away or recycled.

Plastics are known for their durability and long life. The problem with plastics is that their chemical and physical characteristics are cause for concern in the environment. An initial issue was with wildlife ingesting indigestible plastics or getting caught in pieces of plastic and dying. This resulted in an effort to develop a biodegradable plastic (will break down in the environment). Anastas and Warner state that in designing a chemical for biodegradability, the parent product must be assessed to determine what it will break down into. They go on to say that it is possible to place features and functional groups in the molecular structure of a chemical product that will facilitate its disassembly (1998). In addition, the degradation products themselves may possess toxicity or other hazards that must be assessed. So just as with any other green chemistry process, the process to make biodegradable products should include the effects on human health, ecosystems, wildlife, and the overall pollution load (Anastas and Warner 1998, 53).

According to the Sustainweb Web site 13 the best way to reduce the environmental damage caused by plastics, or any sort of waste, is to follow the rule: reduce, reuse and recycle. So when it comes to plastic (water or juice) bottles (a product my students use everyday), although it is possible to make biodegradable plastics, recycle certain plastics, and even reuse them, by far the best option is not to have a bottle at all. This means using tap water in a reusable bottle. Tap water easily wins the battle with bottled water; there is no plastic waste to burn, bury or turn into other consumer goods, using more energy! The Sustainweb Web site also states that despite bottled water costing around 500 times as much as tap water, analysts predict we will buy more than 2 billion liters this year. And, when it comes to transporting water, the Chartered Institution of Water and Environmental Management 14 has pointed out the substantial fuel costs, and thousands of tons of harmful emissions involved in transferring over 22 million tons of bottled liquid from country to country every year. On the other hand, tap water is relatively efficient in comparison as its underground infrastructure of pipes and plumbing uses significantly less energy than shipping and trucking bottles around the world.

In addition, Waste Management 15 reports that Americans discard 38 billion plastic water bottles every year and that we produce enough plastic film in the United States to shrink-wrap Texas! Why so much consumption? Plastic is easy to work with, it's lightweight, flexible, economical, has high strength, low friction, no electrical conductivity, no maintenance and is extremely accessible in stores. The problems with plastic are that manufacturing it is resource intensive, it's made from non-renewable resources (fossil fuels) and it "never" biodegrades. It's also a source of the CO 2 emissions in our atmosphere that contribute to global warming. Waste Management reports that it takes more than 1.5 million barrels of oil to produce a year's supply of water bottles. That's enough oil to fuel 100,000 cars for a year. In short, yes, we'll run out of oil eventually, but we'll always have our plastic garbage!

Types of Plastic

Plastics come in a variety of colors and chemical formulations, all with different recycling needs. So how can you tell whether to put a plastic container into your recycling bin? Turn the product over and look for the recycling symbol, a triangle with a number from 1 to 7 inside (see Figure 2 below).

image 09.05.08.03

Figure 2

The number that you'll find is the "resin identification code," or RIC. It is used by the plastic industry for promotional reasons. The number identifies the molecule shape; it is the code of what type of plastic it's made of. It does not mean the item can be recycled, only that each number represents a different type of plastic, and some are more easily recycled than others. There are hundreds of different types and molds of plastics. As of right now, we can only recycle a few types of plastic! It can be misleading and frustrating to see the recycling symbol on a plastic container that cannot be recycled. Some municipalities accept all types of plastic. Others accept only containers with certain code numbers stamped on them. Still others accept only products with specific resin codes that are bottles (having a neck that's narrower than the body). So if you're like me, you might be thinking this is too much too remember, just tell me what CAN I recycle?

It takes 700 years before a plastic bottle begins to decompose in a landfill. Therefore, it is important to know what types of plastic are widely, seldom, and never accepted for recycling so they do not end up in a landfill. The following information is reported on the Waste Management Web site: 12

What's Widely Accepted? Products labeled Code 1 and Code 2 are widely accepted at recycling facilities. They must be clean before you place them in your bin.

Code 1 = Polyethylene Terephthalate (PET or PETE). PET plastic is the most common for single-use bottled beverages, because it is inexpensive, lightweight and easy to recycle. It poses low risk of leaching breakdown products. It is also used to make fibers such as Polyester and Dacron and thin films such as Mylar. PET plastic composes 18% of the world's polymer production.

Found In: Soft drink, water, mouthwash, and beer bottles, containers for salad dressing, vegetable oil, peanut butter, and oven-ready food trays.

Recyclability: Widely accepted by curbside recycling programs. Please remove caps.

Recycled Into: Polar fleece, fiber, tote bags, furniture, carpet, paneling, and new containers.

Code 2 = High-Density Polyethylene (HDPE). HDPE is a versatile plastic with many uses, especially for packaging. It carries a low risk of leaching and is readily recyclable into many goods. Over 60 million tons of this material is produced worldwide every year.

Found In: Milk jugs, juice bottles, bottles for bleach, laundry detergent, some household cleansers, motor oil bottles, butter, oleomargarine, yogurt tubs, cereal box liners, and some trash and shopping bags.

Recyclability: Picked up through most curbside recycling programs, although most allow only those containers with necks. Please remove caps.

Recycled Into: Laundry detergent bottles, oil bottles, pens, recycling containers, floor tile, drainage pipe, lumber, benches, doghouses, picnic tables and fencing.

What's Less Commonly Accepted? Municipalities often differ on whether to accept products labeled with Code 4 and Code 5. Call your local recycling plant to find out what they accept.

Code 4 = Low-Density Polyethylene (LDPE). LDPE is a flexible plastic with many applications. Historically it has not been accepted through most American curbside recycling programs, but more and more communities are starting to accept it.

Found In: Squeezable bottles, bread wrappers, frozen food and dry cleaning bags, tote bags, clothing, furniture, and carpeting.

Recyclability: Not often recycled through curbside programs. Plastic shopping bags can be returned to many stores for recycling.

Recycled Into: Trash can liners and cans, compost bins, shipping envelopes, paneling, lumber, landscaping ties, and floor tile.

Code 5 = Polypropylene (PP). PP has a high melting point, and so is often chosen for containers that must accept hot liquid. It is gradually becoming more accepted by recyclers.

Found In: Yogurt containers, syrup bottles, condiment bottles, caps, straws, and some prescription medicine bottles.

Recyclability: May be accepted by your curbside recycling programs. Call your local recycler.

Recycled Into: Signal lights, battery cables, brooms, brushes, auto battery cases, ice scrapers, landscape borders, bicycle racks, rakes, bins, pallets, and trays.

What's Almost Never Accepted? Products labeled with Code 3, 6, or 7 are less often accepted for recycling. Check with your local recycler.

Code 3 = Polyvinyl Chloride (V or PVC). PVC is tough and weathers well, so it is commonly used for piping, siding, and similar applications. PVC contains chloride, so its manufacture can release highly dangerous dioxins. If you must cook with PVC, don't let the plastic touch the food. Also never burn PVC, because it releases toxins into the air.

Found In: Window cleaner and dishwashing detergent bottles, shampoo bottles, cooking oil bottles, clear food packaging, wire jacketing, siding, windows, piping, medical equipment, and also used in most blister packs.

Recyclability: Rarely recycled but may be accepted by some plastic lumber makers.

Recycled Into: Decks, paneling, mud flaps, roadway gutters, flooring, cables, speed bumps, and mats. PVC is commonly used for construction grade applications because of its toughness.

Code 6 = Polystyrene (PS). PS can be made into rigid or foam products, in the latter case it is popularly known as the trademark Styrofoam®. Evidence suggests polystyrene can leach potential toxins into foods. This material was notorious for being difficult to recycle. Each year, Americans throw away 25 billion polystyrene cups, enough to circle the Earth 436 times!

Found In: Some over-the-counter medicine (aspirin) bottles, compact disk cases, disposable plates and cups, restaurant carry-out containers, coffee cups, plates, meat trays, and egg cartons.

Recyclability: Polystyrene is rarely accepted in most curbside recycling programs. Please check with your municipality for specifics.

Recycled Into: Insulation, light-switch plates, egg cartons, vents, rulers, and foam packing, and restaurant carry-out containers. Polystyrene can be made into rigid or foam products usually called "expanded polystyrene." It is popularly known by the trademark Styrofoam®, which should not be placed in your recycling bin. Instead, there are a number of drop-off locations for expanded polystyrene, and they can be found at http://www.epspackaging.org/info.html.

Code 7 (OTHER). Code 7 means that the product in question is made with a resin other than the six "coded" resins; or that it is made of more than one type of plastic. The most common may be polycarbonate, or Lexan, which comprises popular Nalgene® bottles. Polycarbonate is linked with an ingredient called Bisphenol A (a hormone disruptor) and can leach into the food or liquid when the bottle is heated to 175 degrees F (80 degrees C) at about 5 to 7 parts per billion. A few are even made from plants (Polylactide, also known as PLA), and are compostable. PLA is a biodegradable packaging material derived from renewable resources such as cornstarch or sugar cane.

Found In: Three- and five-gallon water bottles, bulletproof materials, sunglasses, DVDs, iPod® and computer cases, signs and displays, certain food containers, and Nylon®.

Recyclability: There is very little recycling potential for most Code 7 plastics at this time. You can place polylactide packaging into a municipal composter or your own backyard compost pile.

Recycled Into: Plastic lumber and custom-made products.

Some plastics cannot easily be made into other products, or doing so is not economically feasible. If your local recycler doesn't accept a particular type of plastic, it's probably because the market for that resin is small or non-existent.

Plastics to Avoid

On a final note, keep in mind there are 3 suspect plastics to avoid. The first to avoid is #3 Polyvinyl Chloride (V or PVC), which, if you remember is found in cooking oil bottles and clear food packaging. Harvard-educated Dr. Leo Trasande of the Mt. Sinai School of Medicine advises consumers to avoid #3 plastics for food and drinks. Polyvinyl chlorides may release toxic breakdown products, including phthalates, into food and drinks (The Daily Green 16). Phthalates are plasticizers (additives that increase the plasticity or fluidity of the material to which they are added) that are added to polyvinyl chloride (PVC) products to impart flexibility and durability. They are produced in high volume. Phthalates are animal carcinogens and can cause fetal death, malformations, and reproductive toxicity in laboratory animals (American Chemistry 17). The risk is highest when containers start wearing out, are put through the dishwasher or when they are heated (including the microwave). PVC manufacturing can release highly toxic dioxins into the environment, and the materials can off-gas (the release of chemicals from various substances under normal conditions of temperature and pressure) toxic plasticizers into your home (American Chemistry).

Another plastic to avoid is #6 Polystyrene (PS), which is found in disposable plates and cups, egg cartons and carry-out containers. Why should you avoid using them as much as possible? #6 plastics can release potentially toxic breakdown products, including styrene, particularly when heated (clear colorless liquid used to make thousands of remarkable strong, flexible, and light-weight everyday products)! Think about that little white foam cup you've used for hot cocoa or coffee. You know the one that can keep your drink warm without burning your hands. Doesn't seem so great after all does it?

The last plastic to avoid is #7 (Other), which is found most often in baby bottles, three and five-gallon water bottles and certain food containers. Remember this category contains a wide range of plastic resins that don't fit into the other six categories and, therefore, are lumped into #7. Some are quite safe, but the ones to worry about are the hard polycarbonate varieties, as found in various drinking containers, like Nalgene® bottles, and rigid plastic baby bottles. Studies have shown polycarbonate can leach Bisphenol A (BPA), a potential hormone disruptor, into liquids. According to Dr. Trasande, no level of BPA exposure is known to be truly safe, and recently a government panel expressed some concern that the ingredient causes neural and behavioral problems in children.

If the plastic facts are not enough proof for you to switch, know that reused, unwashed, and unsterilized plastic bottles are a breeding ground for invisible bacteria that nestle in cracks and scratches, we cannot even see. Yuck. On the up-side, artificial biopolymers are starting to be generated from renewable natural sources and are often biodegradable. But in the meantime, why not play it safe and swap out those hard plastic water bottles for #1, #5, corn-based plastics, stainless steel, or even shatter-resistant glass?

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback