Strategies
Case Studies
Case studies have rarely been used in middle school science teaching except as occasional stories told by a teacher. James B. Conant of Harvard was apparently the first science educator to try and organize an entire course around this mode of teaching 30. However, unlike the current practice in business and most other fields which present cases within a framework of discussion or Socratic dialogue, Conant presented cases entirely in a lecture format. Conant's model did not survive him and other attempts to use the method are not widely known.
In contrast, business and law schools have had a long tradition of using real or simulated stories known as cases to teach students about their field. Harvard University has been the leader in developing cases in these subjects 31, and has produced faculty who have carried their enthusiasm for the method to other institutions. Valuable case books in the field have been written about the pedagogy. Other disciplines such as medicine, psychology, and teacher's education have used the method to capture the imagination of students.
In these disciplines, cases are typically written as dilemmas that give a personal history of an individual, institution, or business faced with a problem that must be solved. Background information, charts, graphs, and tables may be integrated into the tale or appended. The teacher's goal is to help the students work through the facts and analyze the problem and then consider possible solutions and consequences of the actions that might take.
Using Inquiry
Our school's curriculum is based in inquiry based design (IBD). In IBD students often design and direct their own tasks. Students make observations, develop hypotheses about phenomena, and devise tests to investigate their hypotheses. They share responsibility within the group and with you for answering questions, and use a scientific approach to solving problems. Research indicates that students being taught in effective inquiry-based learning environments improve skills and exhibit more positive attitudes toward science. Improved skills, laboratory procedures, graphing interpreting data, oral communication, and evidence of critical thinking are all benefits of using an inquiry based design model 32.
The physical behaviors of scientists are demonstrated in IBD. Students simply learn more than science concepts and skills. They learn problem solving and question answering in a non formulaic method. The inquiry process involves the following steps: observe a process or event, formulate questions based on observations, develop a workable hypothesis, devise a strategy for testing it, analyze and draw conclusions from collected data, and finally communicate findings to others.
Inquiry-based instruction requires a unique approach. As with all classroom activities, however, the use of sound instructional techniques is critical to maximizing student learning. It is not only appropriate but necessary to teach the process before beginning an IBD activity. Students must become aware of each phase of the process. Teach students how to focus on these elements purposefully, conduct guided and independent practice with each element individually.
Collaboration is an additional skill to model and set expectations before IBD can be successful. Help students learn to collaborate to solve problems. Working with and learning from others are integral parts of the scientific process. Students must work effectively with a group for inquiry-based instruction to be a success. Make your expectations for group work clear, and provide ongoing feedback based on your observations of student interactions.
In IBD all activities begin with Structured Inquiry. Here students follow precise teacher instructions to complete a hands-on activity. Partially through students begin Guided Inquiry. Then students develop the procedure to investigate a teacher-selected question. Finally through Student-Initiated Inquiry, students generate questions about a teacher-selected topic and design their own investigations. Early in the year most activities are 90 percent structured inquiry, but midway through the year structured inquiry should be limited to no more than ten percent of activity time. Students should be the facilitators of their own learning and own designs.
As always monitor, your responses. Most students are familiar with traditional instructional models; they are accustomed to asking a question and being told an answer. IBD instruction requires a different approach. Supply what students need to move forward with the investigative process, but don't ruin the ending. Science instruction should reflect the way that science is practiced in the real world.
Comments: