Rationale
"Without a science-literate population, the outlook for a better world is not promising," says former astronaut George D. Nelson, director of the American Association for the Advancement of Science's Project 2061. Ideally, California and the nation would like to regain a leadership role in the fields of science, medicine, and technology. It is said that our economy and security depend on it. At the university level, enrollment in STEM majors (STEM stands for Science, Technology, Engineering and Math) and the pursuit of science or STEM-based careers has failed to keep up with the national and worldwide demand for a scientifically literate population. This pursuit for science literacy has been emphasized my entire teaching career, and yet my class size has never been below 32 students. If science is deemed important let's lower class size to meet student needs. I now have three science preps instead of one or two lab based classes to prepare for. Some believe that No Child Left Behind did in fact leave science behind as it is not a core tested subject. Science, although deemed important by many, has been cast aside and neglected in many educational settings.
Students who might have been previously interested in science have lost interest by the time they have reached high school. I teach at a large suburban high school just outside of San Francisco, California. Our community has small town culture and we are not very sophisticated in our exposure to real science. Twenty percent of our school population is recorded as being socioeconomically disadvantaged but I get the impression that is not accurate. I would estimate that this figure is actually much higher.
Twenty to thirty percent of my students are eligible for academic assistance based on special needs. Last year I co-taught one biology section with a special education teacher to address some of those needs in a pilot program. The academic abilities in each biology section tend to be diverse with students who can function above grade level, at grade level and below grade level in math and reading. Some are at first grade level. According to the 2011 California state testing standards twenty five percent of the tenth graders scored below basic or far below basic in biology while thirty two of the eleventh graders scored below basic or far below basic in earth science. Both these courses are needed to graduate in my district.
Many students, unfortunately, perceive the study of science (biology in particular) as the acquisition of a huge array of information. As they get older they tend to forget their innate curiosity for the natural world and sciences in general. They see science as a large textbook of knowledge they are required to remember and a class they must struggle with in order to pass and graduate. The vocabulary is new and difficult, as are the concepts. I intend to give my students a historical context of the concepts of biology as a strategy to spark their interest and motivation. I also want to share with them the hardships of various scientists before and after major breakthroughs. I think many see scientists as pampered and privileged members of society, and this is rarely so, especially in the past where many trudged on in poor conditions with little funds.
I want them to understand that biology is a process of discovery through investigations that have occurred over a span of many years. Sometimes information has been gathered not only through decades, or a generation, but through multiple centuries. The nature of science is cumulative. Only through hard work, perseverance, dedication and luck, have breakthroughs and discoveries been made. Success in biology requires asking meaningful questions with an inquisitive mind, overcoming various obstacles and pressing on without support.
Most, if not all, of my students want answers and results to be predictable. They tend to get upset if their data is unexpected or if the results are not predictable and obvious. They feel comfortable doing cookbook science and being spoon-fed information. Even though there is much pressure to teach this way, I want them to experience science. I desire my students to be engaged and motivated to ask their own meaningful questions, design investigations and be comfortable with being uncomfortable. In view of the above, my unit is one in which students will explore how each of the following people engaged in the scientific process to arrive at their conclusions, discoveries, breakthroughs and/or theories: Socrates, Rosalind Franklin, Rachel Carlson, Louis Pasteur, Antony van Leeuwenhoek and Jean Baptiste Lamarck.
After a strong exposure to the work and tribulations of these great minds, I will encourage the students to be active learners challenged with problem solving and critical thinking. Ultimately, I want my students to develop the confidence to keep plugging away at problems or questions. By highlighting selected scientists and/or breakthroughs that have made significant contributions to the field of biology, students will understand the process of science. Discoveries have not come quickly or easily. Only through years of labor and a dose of luck have scientists helped us understand the world we live in. Perseverance over time is the theme of my curriculum project.
My curriculum project will be an ongoing theme that spirals throughout my course curriculum over the span of the school year. My biology sections contain mostly 10 th graders who are the target population for this curriculum, but I can apply it to 11 th grade physiology and 9 th grade health, as well.
Comments: