Classroom Activities
Utilizing the Cornell Method of note taking and cooperative learning strategies, such as brainstorming, numbered heads together, reciprocal teaching, and team teaching, the first few days of the curriculum unit will focus on the students researching the Big Bang theory, stellar evolution, Big Bang, stellar, and supernova nucleosynthesis. As an assessment project, each group of students will be given a different list of astrophysicists and mathematicians from whom they could choose to write a report. Additionally, students will be able to create timelines involving the Big Bang and the expansion of the Universe, as well as creating posters illustrating different concepts of Big Bang, stellar, or supernova nucleosynthesis.
Activity 1: Power Point Presentation
The main activity for this unit will be for each cooperative learning group to prepare and present a fifteen minute power point presentation on a different aspect of the origin of the elements. After briefly presenting the basic foundations of the Big Bang theory and nucleosynthesis, each group will be assigned one of the following topics for their presentation: history of the Big Bang theory, stellar evolution, Big Bang nucleosynthesis, stellar nucleosynthesis, supernova nucleosynthesis, nuclear fusion reactions, and neutron capture reactions. The students will be escorted to the high school library where they will research their topics for two days using both written and electronic resources. The following two days each group will prepare their power point presentation. Presentation and discussion of their work will take place over the last few days of this unit.
Additional activities for this unit have been taken from Imagine The Universe! What is Your Cosmic Connection to the Elements? The following is a list of activities from which I will choose in supplementing this unit throughout the year. A detailed description of each activity including procedures, materials, and worksheets can be found at the website under teacher resources. (29)
Activity 2: "How Do the Properties of Light Help Us to Study Supernovae and Their Remnants"?
The behavioral objectives for this activity include: (1) students will learn how white light can be separated into its various colors, (2) students will learn the mathematical relationships between wavelength, frequency, and energy of light, (3) students will learn how to solve for a variable by rearranging an algebraic equation, and (4) students will learn about the nature of light and the electromagnetic spectrum. After reading the article entitled "What is Electromagnetic Radiation?" the students will be able to use the following equations: c = Λf and E = hf to complete the worksheet entitled "Calculation Investigation". Using the aforementioned equations, the students will be able to solve for different variables with the proper units by rearranging the algebraic equations. The time allocated for this activity is one class period.
Activity 3: "Atoms and Light Energy"
The behavioral objectives for this activity include: (1) students will learn the basic structure of the atom, (2) students will be able to calculate the energy differences in the different states of a hydrogen atom, and (3) students will be able to compare their calculations with the known bright line spectrum for hydrogen. After reading the article entitled "Inside the Atom" the students will complete the worksheet entitled "Calculate the Energy". Using the following equation:
E = (-13.6 / n 2) eV
where n is the principal quantum number and eV is equal to 1.6 x 10 1 9 Joules, the students will be able to: (1) calculate the energy of the first excited state, (2) calculate the energy released by a photon of light falling from fourth energy level down to the second energy level, (3) use the relationship between the energy and wavelength to calculate the wavelength of the photon in question (2), and (4) compare the calculated wavelength with the given bright line spectrum for hydrogen. The time allocated for this activity is one class period.
Activity 4: "Supernova Chemistry"
The behavioral objectives for this activity include the students being able to: (1) learn about nuclear fusion, (2) learn about gravitational collapse, (3) learn the classification of supernova remnants, (4) learn why supernovae are important, and (5) compare and contrast the observed visible spectra from a variety sources including known elements. After reading the articles entitled "Supernovae" and "Supernova Remnants", the students will perform a laboratory activity using various glass emission tubes filled with known gases, fluorescent tubes, and regular light bulbs. With the aid of colored pencils, the students will draw diagrams of the spectra they observe. They will also answer such questions as: (1) How do scientists know that the helium discovered on Earth is the same as what was discovered on the Sun?, (2) After comparing the visible spectra of the known elements, what gas is in fluorescent tubes?, (3) Are there any differences between incandescent and fluorescent bulbs?, (4) Why are fluorescent bulbs considered energy efficient?, and (5) Based on the spectra produced from the "plant grow" bulb, why is the light better for plants? The time allocated for this activity is two days.
Activity 5: Cosmic Shuffle
For this activity, the behavioral objectives are: (1) the students will be able to understand the primary type of nucleosynthetic process that takes place in stars, and (2) the students will be able to write balanced equations for nuclear fusion reactions up to oxygen. This is a card game in which students are dealt seven cards from a deck containing the symbols, in relative proportions, of various isotopes, electrons, neutrons, positrons, and energy. The object is for the student to use the cards in their hand and/or chosen from the deck to form a nuclear fusion reaction. Scores are based on the mass number of each element that is formed. One class period will be allotted for completion and discussion of this activity.
Activity 6: Cosmic Ray Collision
The behavioral objectives of this activity are: (1) the students will be able to determine the probability of a collision occurring between objects at different distances, and (2) the students will be able to compare their results with the probability of a collision occurring between cosmic rays and atoms in space. The activity reports this to be a one in thirty chance. This activity should take one class period to complete and discuss.
Activity 7: What's Out There?
In this activity, the behavioral objectives are: (1) the students will be able to estimate the composition of elements within a given population, and (2) the students should be able to determine what object the population represents based on the composition of the given population. This activity is allotted one class period for completion and discussion.
Comments: