Objectives and Strategies
All 4 th and 5 th grade students will gain knowledge about and experience with energy during a ten week intensive energy project. The majority of activities will take place during a once per week 40 minute block of Science Lab, however, additional reinforcement of activities will take place within the self-contained classrooms. The first four weeks will focus on an energy overview for all students. Over the course of the four weeks following, 4 th graders will explore energy from the sun and 5 th graders will examine energy from wind and water. Finally, the final two weeks will be spent in culminating activities where students demonstrate and share the new knowledge that they have gained. The overarching objectives for the entire curriculum unit are for students to understand: 1) what energy is 2) where does energy come from (energy sources) 3) how energy usage affects climate, environment, and human health and 4) how to make informed energy choices.
Energy Overview for All Students
One of the first objectives of the curriculum unit is for all students to gain a fundamental and concrete understanding of what energy is. Energy can sometimes be difficult for younger students to understand because it is a more abstract and less tangible scientific concept. The strategy that I intend to use to help make energy easier to grasp is to have students engage in an activity where they rotate among stations that will contain hands-on demonstrations of different types of energy. Students will not be given any prior information or formalized definition of what energy is prior to participation in the activity. I feel that this strategy is effective in getting students to think critically about what is going on in each center and how it might relate somehow to energy. At each station students will answer one simple question: Based on what you did in station #___, what do you think energy is? I have noticed at different points at time that my own students are overly eager for me to simply give them the "right answer" without trying to really stretch their own powers of observation and reason. I believe that this type of constructivist (where students construct their own knowledge) approach helps to counter that idea of what it means to learn something. Not only that, but as students rotate throughout the centers they are forced to activate their own prior knowledge to make connection with the material, therefore the new information becomes a natural part of their own internal schema.
A second objective for the unit is for students to acquire a body of factual information about the ten major sources of energy, including the impact that they have on the environment, climate, and human health. The strategy that I will use to accomplish this is a jigsaw activity. A jigsaw activity is a cooperative learning technique where-just as in a jigsaw puzzle-each student will hold an essential part-to the cooperative group having a complete and full picture of the material. I have noticed that one obstacle of truly successful cooperative groups is that some students want to control all of the tasks and others don't want to complete any of the tasks. If each student's role is essential to group success then each student themselves become essential to the learning process. In each group, one student will research and become the expert on his/her energy source. I have noticed in my own classroom that when students know that they are going to have to "teach" other students the material, they usually gain a deeper understanding of the information themselves and that is why I have chosen this particular strategy. Prior to coming back to the group, the students will meet as a panel of "experts", for example: all people with the energy source of "oil" will conference and share information. This strategy allows learning to become a synergistic process and reinforces the idea that there is not just one "right answer", but rather many. When groups reconvene, each group member will be creating sets of energy fact cards. The strategy employed here is that students are creating a reference resource for themselves that they can refer to throughout the unit when memory of a particular energy source becomes cloudy. Rather than relying on the teacher to refresh the body of knowledge or simply stumbling along without understanding, students become self-reliant knowing that they have a place to go to when they need information.
Finally, this new body of knowledge will be put to the test with a super fun informal assessment activity disguised as a game. Teams are assigned particular energy source and the goal is to keep your energy a source a secret while figuring out which energy source other teams have. The reason that I have chosen this game is that the more times the game is played, the more strongly the information is reinforced. When students have something to directly gain from acquiring the information, even if it is only bragging rights over another team, suddenly that body of information has intrinsic real world value to them in the present.
A third objective for both 4 th and 5 th grade students is to practice making real world energy choices. To accomplish this goal, I have decided to utilize the strategy of using case studies. From the prior activity, students may have a theoretical understanding of why choosing one source of energy is preferable to another. I believe that at this point in their understanding, some students may wonder why we are not just abandoning fossil fuels use all together. However, it is often the case that real world choices are not that simple and provide dilemmas that require setting priorities, weighing pros and cons, and making decisions when a best choice in not immediately evident. I hope that this strategy will give students a glimpse into how complex the world of energy choices really is as well as give them practical experience in using decision making skills. Many students have the misconception that energy choices are something relegated to the world of adulthood, so another strength of this strategy is to get students thinking reflectively about their own day to day energy choices. To help scaffold students (provide a temporary framework to support the construction of learning) through the decision making process, we will utilize a "decision tree" which is a tree-like model of decisions and their possible outcomes and consequences.
A final objective for both grade levels, before they diverge into an in depth look at their own particular energy source is for students to gain a basic understanding of how electricity is generated. This is a vital piece to the continuum of understanding because the three forms of renewable resources that are being studied (sun, wind, and water) are going to be examined primarily from their potential to be sources of generating electricity. I have discovered among my own students, and indeed many adults, that there is no real sense of how the electricity coming from the switches and outlets we are so familiar with is actually produced. My initial strategy is to start the lesson with a look at an electromagnet. I have chosen this specifically because building an electromagnet is a favorite science fair project among my 4 th and 5 th grade students already; therefore they have some prior background knowledge. I want to explore the idea of whether or not they can make the leap from using electricity (in the form of a battery) to generate a magnetic field to the ability to run the process in reverse using a magnetic field to generate a current of electricity.
The second portion is to have students watch a teacher led demonstration of the basic components of a small motor and how it can be converted to a generator using a hand crank. I felt that because my student body is still relatively young, a teacher led demonstration would be best suited for this step rather than a hands-on activity. Students will still get to see a tangible example while reducing the potential for student injury from the mild shock potential in this experiment. A secondary objective is for students to walk away with the knowledge that no matter what the energy source used (coal, sun, water, etc.); electricity is still made in the same way by spinning a magnet within a coil of wire or spinning a coil of wire around a magnet. To accomplish this goal, I will have students create a graphic organizer of electrical generation and they will be able to choose between energy sources to power that process. At the end, the class will then examine the differences and similarities between a variety of the graphic organizers strengthening their skills in comparing and contrasting.
4 th Grade Exploration of Energy from the Sun
In this section, the focus will be on the 4 th grade exploration of solar energy. One objective for this portion of the unit is for students to know that solar energy can be collected passively in the form of heat or converted actively into electrical energy. A secondary objective is to look at variables that affect how much energy can be captured from the sun during the differing activities. One strategy that will be employed is the use of scientific experimentation. Scientific experimentation is an important part of the overall science curriculum as it helps develop inquiry and deductive reasoning skills which are critical to the discipline of science; not to undermine the fact that students simply enjoy experiments, thus increasing the level of classroom engagement.
During the three activities where students collect the energy of sun through the use of water collectors, solar houses, and photovoltaic cells, students will be practicing scientific process skills by following the steps of the scientific method throughout. Students will keep a laboratory notebook of each experiment in which they will record their hypothesis, procedure, observations and data, results and conclusions. The use of this particular strategy helps accomplish several things: 1) The teacher has an ongoing record to use to assess how learning is progressing and what concepts may need review 2) The students get in class practice using the steps of the scientific method which they will have to use independently to complete science fair projects 3) This method helps support school-wide goals of increasing writing within the content areas and 4) For my body of ELL students, this will re-enforce complicated science vocabulary like "hypothesis" and "variable". For the duration of these scientific experiments, students will work in partner pairs. I have found that with proper selection of laboratory partners, this type of cooperative learning can be quite effective. Firstly, for many of the experiments, one set of hands is simply not enough whereas more than two sets of hands generally leaves one students without anything to do. Secondly, it allows me to pair up students who are strong readers and writers with students who need more assistance in that area, so that the students themselves become helpmates to their partners rather than relying solely on teacher assistance.
5 th Grade Exploration of Energy from Wind and Water
This section will focus on the 5 th grade exploration of energy from wind and water. The overarching objective is for students to understand how energy from wind and water can be used to do work ("work" will be defined through a scientific lens of the ability to displace a load using a force). A second objective would be to examine how wind and water energy can be transformed into usable electricity. One similarity between the 4 th and 5 th grade activities surrounding the exploration of their particular energy source is that hands-on constructivist activities will be continued to be used. However, the activities will differ greatly in the underlying scientific process skills that they promote. Whereas the 4 th graders focused on scientific experimentation, the 5 th grade students will focus on technological design.
Technological design is the building of products and systems to meet human needs. The reason for my choice of this teaching strategy is that research shows that technology-related activities provide a rich ground for learning science when they focus on (a) designing and testing artifacts and (b) critical analysis and explaining performance failures of artifacts. 17 Throughout the four activities students will do just that. Students will work in cooperative pairs to construct, test, and optimize performance of water wheels, a simple windmill, and a more complex wind turbine. To ensure that work remains equitable within the groups, teams will be assessed using an observation checklist with teacher expectations clearly laid out beforehand. I have found that this has been an extremely effective tool in managing classroom behavior during activities as well as ensuring that true cooperation is occurring within pairs. 5 th grade students will also keep a notebook throughout their activities, but rather than utilizing it for recording experiments, students will use it to sketch out ideas, take notes during testing, and assist them in developing new ideas. A secondary strategy employed in the use of the notebook is for students to journal about their ongoing learning. This strategy will help students begin to think meta-cognitively about their own learning. The use of notebooks also helps our school support the larger goals of improved communication skills in the content area of science.
Culminating Activities for All Students
This final section will focus on culminating activities in which both 4 th and 5 th grade students will engage. The primary objective of this part of the curriculum unit is to allow students to demonstrate their new found knowledge and to allow the teacher to assess the end results of the unit. The strategy employed is to allow students to demonstrate their learning in a variety of ways that will allow them to draw from their own personal strengths. Students will have a degree of choice in the type of medium(s) they use to express their learning. Options will include visual displays and artifacts, demonstrations, as well as written, oral and PowerPoint presentations. A secondary objective is that students will share their understanding with other students. This will happen in two ways: 1) students will formally present energy information in a 3 rd grade classroom setting and 2) students will do less formal presentations at a school-wide "Energy Fair". This strategy works because when students act as "teachers" of the information, it helps them internalize the information and learn it at a much deeper level. Another aspect of the strategy is that the creation of an energy fair fosters community involvement (in this context, community is defined as the school community) as well as student leadership through the planning and organization of the event. Finally, I have employed this strategy because it allows all students to achieve success; everyone has something to show-off and share.
Comments: