Lesson 2 "Energy types, Different and Environmentally Better"
Objective 1
To teach the students about the differences between using fossil fuels as energy sources, and alternative energy sources.
Objective 2
Using science and language arts as the backdrop students will engage in the exploration of researching varying energy sources over the course of a few weeks.
- In sheltered science lessons students will learn about how the sun is able to store energy in rocks, soil, and plants.
- Students will study the periodic table, the periodic table supports understanding of where elements are found, and how they are used; various rock types, studying rock types will give students a better understanding of how coal is a rock filled with energy; photosynthesis, understanding photosynthesis is a good way to help students understand cycles and energy, and it may inspire them to think of creating authentic forms of recycling. In studying these subjects students will be better equipped to learn about how energy is related to the sun.
- Once students gain some recognizable insight into the energy sources they will independently research the different ways each of the above six energy sources are used commonly.
- Finally students will write a 5 paragraph expository essay describing why they think using an alternative energy source is or is not a good idea..
- Students will be given the opportunity to read their papers aloud. (Having an audience tends to work as a motivator of better writing)
Diagram created by Kelly Clark
Lesson Background Oil and Coal
Why do we want use coal and oil as our primary energy sources? For very practical reasons our willingness to use these very useful energy source are that we are knowledgeable about the process of extracting them from the earth, we have taught ourselves enough about each that we know how to find them in places where they are most abundant, they creates jobs for our citizens, they make some folks extremely wealthyand they are more economically advantageous to use than other energy sources.
Oil and coal have not always been the familiar energy sources.
Why oil?
The modern era of oil production began on August 27, 1859, when Edwin L. Drake drilled the first successful oil well 69 feet deep near Titusville in northwestern Pennsylvania. Just five years earlier, the invention of the kerosene lamp had ignited intense demand for oil. By drilling an oil well, Drake had hoped to meet the growing demand for oil for lighting and industrial lubrication.
Drake's success inspired hundreds of small companies to explore for oil. In 1860, world oil production reached 500,000 barrels; by the 1870s production soared to 20 million barrels annually. In 1879, the first oil well was drilled in California; and in 1887, in Texas. But as production boomed, prices fell and oil industry profits declined.
During the early twentieth century, oil production continued to climb. By 1920, oil production reached 450 million barrels - prompting fear that the nation was about to run out of oil. Government officials predicted that the nation's oil reserves would last just ten years.
During the 1950s, a combination of cheap fuel and a burgeoning consumer culture led to an orgy of consumption. With only six percent of the world's population, the United States accounted for one-third of global oil consumption. Foreign oil was so cheap that coal-burning utilities made the expensive shift to oil and natural gas. World oil prices
were so low that Iran, Venezuela, and Arab oil producers banded together in 1960 to form OPEC, the Organization of Petroleum Producing States, a producers' cartel, to negotiate for higher oil prices (22)
Why Coal?
Coal is a combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons. It is the most abundant fossil fuel produced in the United States. (23) Coal is a nonrenewable energy source because it takes millions of years to create. The energy in coal comes from the energy stored by plants that lived hundreds of millions of years ago, when the earth was partly covered with swampy forests. (24) When coal is burned as fuel, it gives off carbon dioxide, the main greenhouse gas that is linked with global warming. Burning coal also produces emissions, such as sulfur, nitrogen oxide (NOx), and mercury that can pollute the air and water. Sulfur mixes with oxygen to form sulfur dioxide (SO2), a chemical that can affect trees and water when it combines with moisture to produce acid rain. Emissions of nitrogen oxide help create smog, and also contribute to acid rain. Mercury that is released into the air eventually settles in water. The mercury in the water can build up in fish and shellfish, and can be harmful to animals and people who eat them. The Clean Air Act and the Clean Water Act require industries to reduce pollutants released into the air and the water. (24) Not only is coal a supreme source of energy, but it comes in multiple forms all of which generate different amounts of energy that can be used for different things. There is lignite, sub bituminous, bituminous, anthracite; it is bituminous coal that is found most abundantly in the United States.
As all useful and profoundly wonderful as coal is, coal damages our environment when used as much as it is being used currently. Also, the more of the resource we use the more depleted it becomes, and the more we damage our environment. So then, we must lessen our needs and consider the wide possibilities other energy forms can offer us.
Not oil or coal; instead alternative energies
In the 1970s, oil shortages pushed the development of alternative energy sources. In the 1990s, the push came from a renewed concern for the environment in response to scientific studies indicating potential changes to the global climate if the use of fossil fuels continues to increase. Which has lead a variety of alternative energy sources that can be very useful, while still offering some concerns and hazards.
Nuclear energy is energy in the nucleus (core) of an atom. Atoms are tiny particles that make up every object in the universe. There is enormous energy in the bonds that hold atoms together. Nuclear energy can be used to make electricity. But first the energy must be released. It can be released from atoms in two ways: nuclear fusion and nuclear fission. (25)
Nuclear energy has both a host benefits: they do not directly release pollutants (sulfur dioxide, nitrogen oxides, carbon dioxides, carbon monoxide, particulates or toxics like mercury); they are capable of adding significant power from a single centralized location; they can be competitive with fossil fuel plants, they operate around the clock, there are many innovative artists of science studying the possibilities of nuclear usage as energy. Some of the biggest drawbacks to nuclear energy is that it uses Uranium which is not limitlessly available in nature; it requires lots of water to cool the systems; releases harmful radioactive gases (not good at all), hazards for mine workers since it is mined similarly to coal. (26)
Wind energy is simple air in motion. The uneven heating of the earth's surface by the sun causes it. Since the earth's surface is made of very different types of land and water, it absorbs the sun's heat at different rates. Wind energy too has both benefits; it has the lowest-cost of all the renewable energies; it has zero fuel cost (with the exception of building the wind turbines); there is no air pollution and climate change associated with it; construction is easy comparatively, so then making new energy sources available quickly. Then there are the drawbacks; there is no prediction of how much energy will be output; high upfront costs, manufactures of the turbines are not in the United States (an opportunity to create American jobs); interference with radars. (27)
Solar energy is free, and its supplies are unlimited. Some of the benefits to solar energy usage are; solar energy panels are easy to install; there are no moving parts; there are no operating costs; there are no fuel delivery costs; design is growing; there are little environmental footprints. The biggest drawback for solar energy is it has the highest cost of all electricity generation sources, even with government subsidies. In addition, large solar thermal farms can also harm desert ecosystems if not properly managed. (28)
Biofuel energy are biomass resources that are converted into liquid fuel needed for transportation, ethanol and biodiesel. Biodiesel can be made from vegetable oils, animal fats, or greases. Most biodiesel today is made from soybean oil. About half of biodiesel producers are able to make biodiesel from used oils or fats, including recycled restaurant grease. (29). Some of the benefits of biofuel energy are thermochemical conversions systems can be generate electricity at any time; when biomass fuels are taken from forestry and agriculture wastes the overall environment impact is minimal; biomass fuels can be derived from supplies of clean uncontaminated wood wastes. Some of the drawbacks include, but are not limited to, emissions of nitrogen oxides, emissions of carbon monoxide, emissions of carbon dioxide (greenhouse gas….not good at all).
These alternative energy sources are becoming more and more obvious as alternatives that we will have to use as primary energy sources. We are in no position to continuously use oil and coal as we have been over the past 100 years. We are in wars around the world over energy, but should we be in fighting wars about the extraction of oil?
Clive Ponting describes one example in his book A Green History of the World: "In 1936 three corporations connected with the car industry (General Motors, Standard Oil of California and the tire company Firestone) formed a new company called National City Lines whose purpose was to buy up alternative transport systems and close them down. By 1956 over 100 electric surface rail systems in forty-five had been purchased and then closed. Their biggest operation was the acquisition, in 1940, of the Pacific Electric system, which carried 110 million passengers a year in fifty-six communities. Over 1100 miles of track were ripped up, and by 1961 the whole network was closed. (30) It is know time to reverse the tide of energy usage.
Let us make oil and coal our alternative energy sources.
Comments: