Rationale
Importance of the Bay
The Chesapeake Bay is a remarkable waterway. Not only is it the largest estuary in North America, but also North America's most diverse. It is the home to more than 3,600 living species. The Chesapeake is also a temporary home for migratory birds. The bay is enormous and supports a wealth of wildlife. The Chesapeake Bay is an important natural resource upon which other living resources depend.
The Chesapeake Bay Watershed covers 64,000 square miles, including the bay and all of its tributaries. The Chesapeake Bay alone has about 8,000 miles of shoreline, and there are 11,684 miles of shoreline in the watershed. It spans out over six states: Virginia, Maryland, Pennsylvania, Delaware, New York, West Virginia, and the District of Columbia (Figure1). Thus, the idea of protecting the Chesapeake Bay is as vast as the bay itself.
My students live within the Chesapeake Bay watershed and their actions or inactions affect the bay everyday. It is difficult to see the impact one's actions have on a bay that is over a hundred miles away from home. However, changes need to be made quickly and need to continue into the future if the health of the bay is to be restored. By understanding the decline of the bay, the history of restoring the bay, and what students and teachers can do; I hope to foster an appreciation for nature and stewardship, no matter where your home is.
Decline of the Bay
When examining causes for decline in any ecosystem, it is helpful to categorize them as physical, biological or chemical in nature. Getting students to think in these terms will help build a strong foundation for ecology. The physical causes listed below include: fishing; and population growth and land use. Global warming; invasive species and marine disease; and endangered and threatened species would fall into the biological category. Pollution is primarily chemical, however, manure would have to be biological. As these issues are taught to my students, I will work to develop their understanding and their ability to classify using these terms.
Pollution
Agriculture is the leading cause of pollution to waters throughout the country. Agricultural pollution comes from commercial fertilizers and animal waste. Animal agriculture accounts for about 50% of the total pollution load affecting the Chesapeake.
Poultry and dairy farms are the two main sources of pollution from animal agriculture reaching the Chesapeake Bay. The poultry industry that is primarily located on the Eastern Shore of Maryland and Virginia particularly plagues the bay. Perdue and Tyson both have plants on the Eastern Shore. Route 13 that extends the length of the Eastern Shore is dotted with "family run" poultry farms. Typically, these farms will have 5-6 chicken houses, containing approximately 40,000 chickens in each one. The manure may be shipped to a local farm and used as fertilizer, or it may accumulate in large piles and get into the runoff when it rains. The result, according to J. Charles Fox, senior adviser to the EPA's Chesapeake Bay cleanup program, is "the equivalent of medium-size cities in terms of the waste that is generated, that is virtually untreated, going into the Chesapeake Bay." 1
The other 50% of agricultural pollution is due to traditional crop farming. The two main crops are wheat and corn. Nationwide, there has recently been a higher demand for corn in order to produce biofuel. The result for the Chesapeake Bay watershed is an increase in the acreage and production of corn, as well as, an increase in the use of fertilizers. On average, about 60% of all of the pollution entering the Chesapeake Bay comes from agriculture. The bottom line is that there is too much agriculture concentrated in one area. 2
The other source of pollution is chemical. It enters the watershed from urban areas. Wastewater and power plants are two sources of chemical pollution entering the bay. In Maryland, 50 million gallons of effluent, liquid waste from industrial plants, enters the Patuxent River per day. Soon, the amount will increase to 80 million gallons per day. 3 The bay is also the recipient of pollution from beyond the watershed boundaries. Power plants in Ohio are responsible for the majority of the mercury in the watershed. The mercury gets into the atmosphere and is deposited into the bay. Unfortunately, bioaccumulation of chemical compounds, or the build-up over time, occurs and may take decades to disappear. These chemicals tend to linger in sediments. They also accumulate, in greater proportion, in organism higher on the food chain. Much of the pollution is a result of human impact and our use of land.
Population Growth and Land Use
There is a direct correlation between the changes in land use and the deterioration of the Chesapeake Bay. With more than 16 million people living within the Chesapeake Bay watershed, the amount of land being developed has vastly increased. Deforestation has taken place to make way for residential and commercial construction. The new construction removes landscaping that controls erosion and filters runoff. It is being replaced with concrete and other non-permeable surfaces. When the surface is permeable, water seeps into the ground and becomes a source of groundwater. This process helps the bay. However, when pavement sprawls across the surface, runoff increases, causing damage to the bay. So the harm caused by deforestation is two-fold.
The increase in runoff carries more nutrients, pollutants and sediments to the bay. Sediments are harmful to the bay for several reasons: they absorb high levels of toxic materials, reduce the water clarity and decrease the water depth. This is especially harmful to the shallow waters of the Chesapeake Bay. Unfortunately, urban sprawl is not the only detrimental land use that has increased.
Over the years, farmland has also expanded. "Agriculture is by far the largest source of pollution to the Chesapeake Bay, and arguably the single biggest source of pollution to all of the waters in the country," states J. Charles Fox, senior adviser to the EPA's Chesapeake Bay Cleanup Program. 4 Agriculture is largely responsible for fertilizer and nutrients that enter the waterways. Currently, the nutrients entering the Chesapeake are the single most damaging factor. "The nitrogen load into the bay from six states is 360 million pounds, to be in balance according to Will Baker, president of CBF, the load should be no more than 150 million pounds per year." 5 We tend to think of nutrients as healthy, but too much is dangerous.
The influx of pollution is creating dead zones. A dead zone is an area with little or no oxygen. Dead zones form when too much nutrient pollution is in the water. The nutrients stimulate an algae bloom. Eventually, the algae die and sink to the bottom. Then it decomposes. During the process of decomposition, oxygen is consumed. The area becomes depleted of oxygen, and can no longer support life. Dead zones are increasing not only in the Chesapeake Bay, but also throughout the world. "The impact human beings are having on the watershed are tremendous, and in many ways irreversible." 6
Toxic pollution presents another problem caused by human impact. Once toxins get into the sediment, it takes a very long time to eradicate the problem. The Allied Chemical Corporation in Hopewell, Virginia produced Kepone from 1966-1973. Kepone was a pesticide used to kill fire ants. Allied Chemical was dumping Kepone into the James River and it was accumulating in the sediments and in the fatty tissue of finfish. The cost of cleaning up the river was considered too high. So, instead commercial fishing in the James River was banned for ten years. Kepone can still be detected in fish found in the James River and is still underneath the sediments. It is estimated that Kepone will be present in the James River for one hundred years. 7 The cost of cleaning up contaminated areas and the long-term effects of toxic waste are troubling. The environment is not only battling chemicals that lay in sediments for decades, but also facing newer challenges, as well.
Global Warming
Global warming is a newer threat. Gas emissions are a main cause of global warming and this warming trend is increasing the air and water temperatures. The pollution created, in the United States and other parts of the Earth, is affecting the poles and the sea ice in the permafrost regions of the world. As the ice melts, it increases the amount of water in the Earth's seas. The increase in water results in higher seas. "The rising sea level is reducing coastal wetlands and mangroves, thus increasing the impact of coastal flooding in some areas". 8 This increase poses a greater threat particularly when large storms, such as hurricanes, brew in the sea. The surge from a storm can be catastrophic in low-lying areas. In 2005, we saw the devastating effects of Hurricane Katrina in New Orleans.
Sea level rise affects the Chesapeake and other bodies of water in several ways. As the water rises, the bay will become deeper. With deeper water, sunlight will be unable to penetrate and reach the submerged aquatic vegetation, or SAVs, that grow on the bottom of the bay. SAVs are grasses that provide habitat, breeding grounds, and food for living organisms. SAVs, like terrestrial plants produce oxygen. If the amount of oxygen is depleted, dead zones will increase and aquatic critters will die. Higher water levels also threaten to cover up barrier islands and bay marshes that are temporary homes and breeding grounds for more than 1 million migratory birds. 9 In 1990, the sea level rose 1.8 mm. The annual amount of rise has been gradually increasing. By 2000, the increase was 3mm. Three millimeters may not seem like much, but think about the cumulative effect. In ten years, the sea level has risen over 20 millimeters, and it continues to rise at a faster rate each year.
Global warming also causes the air temperature to rise. It is expected that the air temperature will increase between 5 and 9 degrees Fahrenheit by the end of the 21 st century. 10 As the air temperature warms, so does the water. The rise in water temperature helps algae to bloom, creating dead zones. Warmer waters also increases the amount of salt the water can hold, or salinity. Saltier water holds less oxygen. Dead zones therefore increase in the summer, when the water temperature in the Chesapeake Bay is warmer.
Global warming is also responsible for increased amounts of precipitation in the winter and spring. The rain then causes more runoff, leading to nutrients, sediments, and pollution overloading the bay. Again, the overload leads to algae blooms that cause the formation of dead zones. The effects associated with global warming are not isolated. There is a ripple effect due to the interconnectedness of the world around us. The lack of oxygen in the water has a tremendous affect on plant and animal species. The lack of oxygen will impact the most sensitive organisms first. Then the ecosystem will begin to change and the changes will begin to accumulate similar to a snowball. The lack of oxygen will no longer affect only the sensitive species, but the entire ecosystem. Thus making these challenges daunting.
Invasive Species and Marine Disease
There are over 200 known invasive species in the Chesapeake Bay. An invasive species is a species that is not native to the area. So how did these "foreigners" get into the bay? Most of the invaders came with cargo ships from other parts of the world. Cargo ships suck up ocean water and store it in the hull, thus creating ballast. This provides stability. When the ships arrive in the Chesapeake, the ballast water is released into the bay. This water contains species, which get discharged into the bay at this time. If a species is to survive in its new environment, it must become part of the interconnected food web. It will secure a niche, or a specific role. If the newcomer is a predator it will pose a new threat to other organisms. Thus, decreasing the population of its prey. The invasive species will also become the prey for another organism. This changes the dynamics of the food web. Again, one small change spirals out of control and creates havoc throughout the ecosystem.
The oyster is an organism whose entire population was altered by "foreigners". Two parasitic invasive species, MSX and Dermo, have killed 90% of the oyster population. 11 In the 1940s, four million bushels of oysters were harvested annually. In the 1990s, only 40,000 bushels were harvested. 12 This example demonstrates a biological stressor, a parasite, which happens to also be an invasive species. An invasive species can be particularly dangerous when it is viral, bacterial, parasitic, or fungal in nature because the native species have not built up their immunity to them.
Aquatic species have an immune system in some ways similar to humans. If people get run down or stressed, they are more susceptible to sickness. When marine life becomes stressed or their immune system is compromised, they are more susceptible to disease. Biological stressors include viruses, fungus, parasites and bacteria. Poor water quality, pollution and toxins are chemical stressors for aquatic organisms. Diseases occur naturally, as with any population. Marine diseases become a concern when large numbers of a species are involved. Similarly, there is greater concern when a human illness becomes epidemic or pandemic. With the increase in runoff, water quality is decreasing thus increasing the susceptibility of organisms to disease. When one considers the overall decline that many species face due to pollution and water quality, the issue of disease becomes a larger concern.
When water quality, disease or other small changes occur in an ecosystem, the energy or the balance also changes. These small changes are called perturbations. There are human and non-human perturbations. An example of a human perturbation would be extra nitrogen going to the bay due to the use of fertilizer. A non-human perturbation would be a change in behavior by a species. These small disturbances can impact different species in different ways. For example, when too much nitrogen enters the Chesapeake Bay, the amount of dissolved oxygen is decreased. The lower level of oxygen is more harmful to finfish, which require higher levels of oxygen, than jellyfish. In this situation the jellyfish may inhabit the area with less oxygen. An increase in the number of jellyfish in the area impacts the prey of the jellyfish. Thus, changing the energy of the food web in this area. 13 The decrease in oxygen also changes the behavior of some species. If an organism is getting less oxygen, it may not be able to move as quickly or as often. This could affect the organism's ability to catch prey or to avoid capture by a predator. The impact of perturbations is difficult to predict. However, in order "to effectively conserve or restore native biodiversity in altered systems, one must consider impacts of multiple human disturbances, and the interactions between them." 14
Fishing
An example of a human perturbation is fishing. This livelihood has been a part of the culture of the Chesapeake Bay for centuries. Commercial and residential fishing remove millions of pounds seafood each year. Fishing the bay is regulated with laws and moratoriums designed to regulate the population. However, because marine species live underwater, it is difficult to obtain an accurate assessment. Typically, the population density, or amount of species in a small area is determined. Using the density figure, populations are then estimated based on the range they inhabit. Knowing exactly where the species live is not as clear as with a terrestrial species. The combination of primitive surveillance and the desire to sustain an industry leads to over-fishing. Several species are over-fished in the bay to the point of threatening the survival of the species. In Figure 2, the population of menhaden is shown. This species is being taken out of the bay at a rate far greater than it can reproduce. The menhaden is not currently on the list of threatened or endangered, but there is an effort underway to add it to the list.
Endangered and Threatened Species
By examining the Chesapeake Bay ecosystem, basic principles of protecting species become evident. The four most common threats to species survival have already been mentioned as causes for the decline of the bay. They are: 1) resource use, 2) exotic species, 3) construction and 4) alteration of habitat dynamics." 15 When trying to protect species, it is important to understand the threats. On average, most endangered or threatened species face four threats. This complicates the situation; and unfortunately a lack of understanding may hinder recovery efforts.
Pollution is more difficult to understand, but in cases where a single tractable threat is determined, the outcome will be more favorable. A single threat was the case with the bald eagle and the peregrine falcon. The threat, the powerful chemical DDT, was revealed in Rachel Carson's book, Silent Spring. Carson's work led to the ban of DDT. The eagle and the peregrine falcon are no longer on the verge of extinction. So, when a single threat is identified, understood and removed, the recovery for the species is much easier.
Effects on the Ecosystem
To understand the detrimental effects on the ecosystem, one must first have a clear understanding of an ecosystem. Long before the term global warming existed, a mathematician and demographer named Alfred James Lotka created the basis for a new science called "physical biology". Lotka was not an ecologist, but his work addressed many ecological problems. He viewed the earth as a single system, an energy transformer. He also discussed food webs, the water cycle, carbon dioxide, nitrogen and phosphorous cycles. Lotka's work led to the 1950s studies by Eugene P. Odum and Howard T. Odum. Their work created ecosystem ecology. 16 These early scientists had ideas ahead of their times.
An ecosystem is "the environment, both the living and the non-living environment, viewed in a way so that it all works together in a system." 17 With so many problems causing the decline of the bay, the effects on the ecosystem are widespread. The systematic nature of an ecosystem is like an intertwined web, where its problems are as interrelated and overlapping, as its effects.
By looking at several species, the impact on the bay will become clearer. Let's begin by looking at the effect on the oysters. "Four hundred years ago, oysters could filter the entire Chesapeake Bay in four or five days. Today's sparse oysters cannot filter the Bay's murky water in a year." 18 The oysters have declined primarily due to invasive species, over-harvesting and from sediments getting into the bay. Silt, or fine sediment, collects in the oysters' gills and also on the oyster reef. The accumulation of silt impedes an oyster's ability to filter water, and basically the oysters are smothered and then die. The loss of the oyster population affects the whole system. When the oyster population declines, so does a valuable filter for the bay. In the absence of these natural filters, the water is not as clear, and the lack of clarity affects the bay grasses. The bay grasses serve as a habitat and a breeding ground for aquatic organisms. Bay grasses also produce oxygen. Without oxygen, dead zones will result and habitats will be depleted. The effects could go on and on as the consequences trickle through the system.
The next species that will be examined is the menhaden. The menhaden are also called alewives. It is a schooling finfish in the herring family. Menhaden are stinky and oily; therefore menhaden are great bait, and are used for fish oil. Menhaden are also natural filters for the bay. A foot-long menhaden fish can filter 7 gallons of water per minute. This equates to 10,000 gallons of water a day. 19 The menhaden population has been declining due to over-fishing. The Omega Protein Corporation uses planes to locate schools of menhaden. Then two boats surround the school, catch them in a net, and suck them up a tube. Up to 300,000 fish may be removed through this process. Some uses of menhaden include fish oil, cosmetics and cat food. The loss of the menhaden represents the loss of another filter for the bay. Rockfish have relied on menhaden as food, but lately have been eating blue crabs instead. The change in diet has affected the health of the rockfish. So commercial menhaden fishing affects the menhaden, rockfish and crab population. As a filter, the loss of the menhaden has larger implications for the bay and other organisms found within the bay.
The Chesapeake Bay is known for its blue crabs. This popular seafood is valued commercially. The harvesting of the blue crab has fluctuated over the years. Since 1980, the harvesting of blue crabs has been on the rise. It is speculated that the decline of commercial fishing for other species may be linked to the increased harvesting of crabs. Commercial fishermen, or watermen, need to make a living. It is estimated that 160 million pounds of crabs are harvested each year. This is split equally between commercial and recreational fishers. 2 0 Blue crabs are an important part of the ecosystem because they control the population of benthic, or bottom dwelling species. Blue crabs eat both living and dead organisms.
Blue crabs and watermen go hand in hand. Next, I will examine how the decline of the bay is impacting watermen. The term "watermen" refers to local residents who make their living fishing commercially. Watermen have been fishing the bay for generations. But, watermen are disappearing due to the decline of the bay, changes to laws, and the reduced profitability. The present generation is likely to be the last. The fact that the watermen are calling it quits speaks volumes for the condition and the future of the bay.
Another detriment of losing the watermen is that they understand the bay. They have spent their whole lives on the bay. Watermen have had to deal with frustrating laws that differ between Virginia and Maryland. The state line happens to run right through the Tangier Sound, which is part of the Chesapeake Bay. Most of the watermen live in Maryland and most of the crabs prefer the saltier water on the Virginia side. This became a problem in 1982, when Virginia passed a law, requiring residency to crab in Virginia. The Watermen's Association took the case all the way to the Federal District Court in Richmond, Virginia. The watermen won citing interstate commerce regulations. However, there are so many laws limiting everything from gear to the schedule changes due to holidays. In Maryland, a male crab must be at least 5 inches, but there is no limit on females. In Virginia, the male crab and immature, hard females must be 5 inches. All of the nuances and disparities between the laws make it challenging for the watermen to make a living. Unfortunately, watermen lack the financial resources to fight in political arenas. They are unable to make the necessary political changes to help their industry and the bay. For years watermen have been denied a voice, despite the fact that they hold the knowledge of the bay close to their hearts.
Attempts to Clean Up the Bay
History
The idea of protecting water resources from pollution is not a new. The earliest statute, "the 1888 Rivers and Harbors Act, said that it was illegal to pollute any waterway in the United States, and, that you had to pay a high penalty if you got caught." 21 The concept of protecting our water resources did not really take off until much later. In 1962, Rachel Carson's book, Silent Spring was published. Her work spoke about the dangers of pesticides. Then a series of environmental disasters including the oil spill in Santa Barbara and several rivers catching on fire brought attention to the environmental hazards of pollution. It was not until the 1970 that concern for pollution control problems in the United States emerged. In 1972, the use of DDT was banned in the United States. This was clearly an outcome of Carson's work.
In 1972, the Clean Water Act was passed. Through the years, it has been amended. The act was designed to regulate point source pollution. Dumping pollutants directly out of a pipe from a sewage plant, a power plant, or a factory is point source pollution. The main goal of this legislation was to make surface water (lakes, rivers, streams, wetlands, and coastal areas) safe for swimming and fishing.
The first Chesapeake Bay Agreement was enacted in 1983. The agreement was signed by the governors of the states of Virginia, Pennsylvania, and Maryland, the mayor of Washington, D.C., the chairman of the Chesapeake Bay Commission, and the administrator of the EPA. It was a statement recognizing the need to work together to improve and protect the bay and its living resources.
The second one, the 1987 Agreement, set forth 31 commitments to improve the health of the bay. A goal was set to reduce the amount of nitrogen and phosphorous entering the bay by 40% by 2000. This was the first time numeric goals were set with specific deadlines. Using specific numeric goals and deadlines is a strategy the Chesapeake Program continues to use.
The third, Chesapeake 2000, was signed by New York, Delaware and West Virginia in addition to the original group of signers. This new agreement states 105 commitments. It focuses on five areas: 1) living resources 2) habitat restoration 3) water quality 4) land use and 5) community engagement. The goals stated are to be met by 2010.
Despite these efforts to restore the bay, the 2008 State of the Bay reported a grade of a D. This is the tenth consecutive D based on these reports. The actual score was a 28 out of 100. The score of 100 represents the condition the bay was in when John Smith arrived. Since the bay could never be fully restored to that level, the top score is actually more like a 70. 22 While this report is discouraging, it has brought it to the forefront of policy makers. The plight of the Chesapeake even caught Barack Obama's attention. On May 12, 2009, he issued an executive order declaring the Chesapeake Bay a National Treasure. This distinction means that the federal government will oversee its protective and restorative efforts. New two-year milestones, an increased rate of progress, and hundreds of millions of dollars will be put toward restoring the bay. Hopefully, these efforts will show improvement on the next report card.
What Can We Do?
As teachers we have a tremendous influence on our students. Because the watershed is so large, people often do not recognize that their behavior in upstate New York or in the Shenandoah Valley of Virginia is impacting the Chesapeake Bay. If we can teach children about watersheds and how watersheds connect the living and nonliving world around them, then we can give them a foundation for ecology. We also need to teach them to get outside and bond with nature. Children, these days spend the majority of time inside, and typically do not explore the outside world around them. If we want to create stewards, we must first teach them to appreciate nature. "The protection of nature depends on more than the organizational strength of stewardship organizations; it also depends on the quality of the relationship between the young and nature - on how, or if, the young attach to nature." 23
Nature in education is becoming a hot topic. Recently, Howard Gardner, who developed the theory of multiple intelligences in 1983, amended his list. He added naturalist intelligence. 24 I challenge you to get your students outside. Have them plant some native shrubs along a local river bank to make a riparian buffer, plant a garden on your schoolyard, or explore a nearby creek. A quote from Thomas Berry, a world- renowned cultural historian, is "Teaching children about the natural world should be treated as one of the most important events in their lives." 25
We need to expose our children to nature and to knowledge about their environment. Then, we need to change their behavior. There are simple lifestyle changes and choices that can be made, from conserving water to using recyclable grocery bags instead of plastic. If many people make small changes, it will make a big difference. Also, people need to think about the long-term effect of their choices and how the world around us works as a system. Change will not happen over night or from a few lessons in class. But, if children hear these messages from a young age and develop an appreciation for nature, then as adults, they may be concerned enough to make a difference.
Comments: