Objectives
Nanotechnology is one of those buzz words I heard from time to time but had no clue what it meant. I teach first through fifth graders who upon entering the work force will be faced with an employment market filled with 'nano' somewhere in the job title or description. While I do not want to go too far over the comprehension level of my students, I want to expose them to concept of nanotechnology, since it seems clear that it will play a large role in their futures.
The overall objective of this unit is to provide an overview of Nanotechnology. I hope to take the mystique out of the idea of and word nanotechnology. Hopefully, at the completion of this unit, the reaction to nanotechnology will no longer be "Oooooo what's that?" but rather "Nanotechnology? Sure I know what that is, it's easy and important. Want me to explain it to you?" That would truly be music to my ears. The objective here is that students will gain a conceptual understanding of nanotechnology, be able to explain it for someone else's understanding and comprehend how it impacts their lives today and in the future.
In addition, I hope to help students develop an appreciation for the nanoscale and how small things are that are nanoscopic. They will come to understand that the nanoscale is extremely small and that working at that scale requires different kinds of tools and instruments in order for scientists to study the phenomena that takes place at that scale.
I intend to integrate nanoscience into my math program: therefore, a primary objective is for students to become fluent in the different ways large and small numbers can be represented mathematically. I intend for students to become comfortable with representing numbers written in words and their equivalent fraction, decimal, positive and negative exponents, and scientific notation formats. I will also integrate this unit into my language arts program. Part of our language arts curriculum involves the ability to decode words for meaning using Latin or Greek roots and affixes. Specific words relevant to topics of this unit lend themselves nicely to decoding according to their Latin or Greek origin.
An additional objective is to introduce students to the structure of matter so that they understand four basic principles of matter: all matter is made of atoms, atoms are in constant motion, molecules have size and shape, and molecules in their environment have unexpected properties. Students will be exposed to the structure of atoms at a very basic level and introduced to four physical forms of carbon to illustrate the concept that the size and shape, but primarily shape, of molecules can have a significant impact on the properties of the material. The different forms of carbon, and their different relative shapes, will be related to their varying properties.
Another objective, one that is close to my feelings about the universe, is for students to realize that nature has many, if not all, of the answers to questions and problems that humans are facing in the world today. I want students to develop an appreciation for nature and learn from it. I hope to promote an underlying discussion about whether humans can discover, create, or invent anything that is really new. Are all of our inventions and creations just a copy of what nature has already accomplished?
A final objective is for students to explore how super powers or characteristics found in the natural world, either in the Animal Kingdom or the Plant Kingdom, can be mimicked to solve human problems. Hence, as part of this objective, students come to know and understand what biomimicry is and the value it serves to learn from the lessons nature has to teach.
Comments: