The Current State of Fusion
Summing up the state of Fusion, both MCF and ICF, McCracken and Stott, state that "After many years, the scientific feasibility of thermonuclear fusion via the magnetic-confinement route has been demonstrated, and inertial-confinement experiments are expected to reach a similar position soon. Developing the technology and translating these scientific achievements into power plants that are economically viable will be a major step that will require much additional time and effort."(17)
Breaking Even and Ignition
The state of magnetic confinement fusion called breakeven has been achieved. This is the situation in which the same amount of energy that is put into the reaction is gotten back out. In 1997, JET (Joint European Torus) produced an excess of 16 MW for a few seconds with a 50% T and D mixture! This is not easy to calculate because of all of the sources of energy, but it was a momentous occasion for the development of fusion! The goal with ITER is to reach ignition, which is the situation where the reaction is self-sustaining and energy could be drawn off of the reaction. ITER hopes to achieve the state that 50 MW are supplied and ten times the power is produced, 500 MW! This would result in the final stage of the process which would be to produce a full scale fusion reactor. The triple point is now within a factor of five for ignition for both MCF and ICF! And on occasion, individual experiments have exceeded the conditions for ignition. Now the goal is to sustain the reaction.
Creating a Fusion Reactor
The three next steps toward creating a commercial fusion power plant based on the tokamak MCF are to demonstrate the feasibility, which has been achieved with JET, TFTR and JT-60U. The second step will most likely be achieved by ITER which will test most of the technical aspects of a power plant, including the tritium breeder reactor. It must demonstrate that fusion is technically feasible. The third step is to build DEMO, a full scale operational reactor to prove that fusion is commercially feasible. It is unlikely that DEMO will be operational before 2050! So in fact, the fusion scientists and their critics are both too optimistic!!! Fusion is not just 25 years off, most likely it is 50 years away!!! This is taking into account the political and economic issues as well as the scientific challenges. Fusion and plasma science has come a tremendous way, but there is a tremendous way to go… If I had to bet, I would suggest that we are half way there! So if we want to get there faster, we must commit resources, money and a lot of determination. I'm of the inclination to believe that we MUST solve this issue to address the problems we have with global warming.
Comments: