Lesson 1: Coal Mining Experiment
For the Warm-Up, find out what students know about the origin of their electricity, environmental concerns related to energy, and energy efficiency practices by giving an energy survey. You can use the information to determine groupings. Students will then view a video that connects coal to electricity. 33
Activity 1: Coal Mining Experiment
For this activity, groups will consist of one person who is fairly knowledgeable about energy and another person who may not be as proficient. Students will simulate mountain top coal mining using a chocolate chip cookie and a toothpick or paperclip. The cookie is the mountain, the chocolate chips are the coal and the toothpick or paperclip is the retrieval tool. Students will estimate the number of chips they can retrieve without picking up the cookie; remind them they cannot pick up a mountain. In the real-world, the area will only become a mine if it is large enough and of sufficient quality so the coal can be retrieved at a reasonable cost. Have students write down the factors they considered in order to arrive at their estimate. Then, students will use the toothpick or paperclip to retrieve the chocolate chips. After they retrieve all the chips they can, have students compare their actual number of chips to their estimates and think about was it difficult to recover the coal from the ground? What impact does mining have on the surrounding land? Is the land suitable for future use? Is there another way to make mining have less of an impact on the land? 34
Activity 2: Coal Mining Math
According to EIA, the average emission rates in the U.S. from coal-fired generation are: 2,249 lbs/MWh of carbon dioxide, 13 lbs/MWh of sulfur dioxide, and 6 lbs/MWh of nitrogen oxides. 35 For each 0.00053 short tons or 1.07 lbs of coal, one kilowatt-hour (kWh) is generated. 36 Students will use this information to write an algebraic expression to model the relationship between the production/consumption of coal and the average emission rates of a greenhouse gas. Teachers can tier the information by providing the data with no conversions or scaffold it by having students do the conversions one step at a time using dimensional analysis. Important conversion factors are 0.001 MWh = 1 kWh and 2000 lbs = 1 short ton. It is important for teachers to be intentional about students seeing the units cancel. For example, the algebraic expression for the amount of nitrogen oxides emissions in pounds for any amount of short ton of coal produced/consumed is
where C is the amount of coal produced/consumed in short tons. Students will then evaluate the expression for given replacement values and look at long term data to compare emissions in various years.
For homework and in preparation for the Dominion Virginia Power speaker, 37 students will view the videos below, which contain different perspectives and give unique information, to construct a verbal or pictorial sequence of where energy comes from. I will split the class into two large groups who will transfer their individual information to a large common paper.
Dominion Power:
http://www.youtube.com/watch?v=Pz2AXbnfSUo&feature=youtu.be
National Grid: How we get electricity and gas using types of energy and an
introduction to renewable energy http://www.youtube.com/watch?v=__zB80Saglk
RCC Power:
http://www.youtube.com/watch?NR=1&feature=endscreen&v=0mjT8ETB128
A possible extension can include students calculating the curve of best fit using the coal production/consumption data to calculate and extrapolate the amount of greenhouse emissions, coal production or coal consumption in the future. Students can also use linear equations to model supply and demand and solve them using systems of equations. In addition, since coal contains potential chemical energy and is combustible, teachers can do a combustion demonstration. For safety reasons (and a chance for the science teacher to remind students about safety), collaborate with the science teacher on this demo. Finally, you can arrange a field trip to the local power plant. I plan to take my class to visit Chesterfield Power Station, the largest fossil-fueled power station in the state. It generates over 1,600 MW and has an average daily consumption of 8,400 tons of coal.
Comments: