Introduction
Imagine a band- aid that when applied fuses and heals the skin or a bio-lens that when placed on the eye corrects one's vision; or cancers, when discovered, can be attacked and destroyed by nano-armies, armed with healing genetic arsenals, DNA warriors. This is the potential of the science of genetic engineering.
We live in an exciting age, a New Age Renaissance of science and technology, harnessing the powers of DNA to transform medicine; the diagnosis, treatment and prevention of disease. The forward thinking cultures of biology, medicine, genetics, and engineering are exploding with new information and insights, creating highly active, dense networks of shared ideas. Cutting-edge technology is revolutionizing how we are able study, find, and correct genes within DNA. Genetic engineers are now exploring unchartered territories of the human genome, resulting in groundbreaking discoveries and treatments, offering hope to the once hopeless.
The advancements in technology are unraveling our DNA with lightning speed, decoding the human genome and revealing its long held secrets. As a result, we have the ability to manipulate the human gene and harness the power of DNA. The secrets that lie within its codes are now available, the way we use this knowledge is in the hands of the next generation, our students. Its outcome limited only by one's imagination. So, let us begin, let us ask our students to imagine the unimaginable.
Consequently, this calls for a shift in the direction of education, a profession devoted to the advancement of learning and the acquisition of knowledge. Can we offer our students a glimpse of the future, a vision of possibilities, and the language to discuss it? Should these concepts be in our classrooms now, infused into the curriculum, improving what students know and are able to imagine for the future? I believe they do. This unit will offer needed insight for future opportunities in bioengineering by growing a culture for students to develop their abilities to think, speak, and explore its concepts. It is an important shift. Our students are capable of understanding these concepts and learning the language of DNA; if given the opportunity. Ultimately, we want our students to be academically prepared for potential fields of science, ready to make their own mark, participating and contributing to the innovative solutions of our era, a new generation excited and prepared to tackle the challenges before us.
In an effort to meet these academic challenges, this unit will create a forum for students to learn the fundamental concepts of genetic engineering and the acquisition of its language. Through a study of the human cell, its structure, and function, students will learn the elements of cell biology. An introduction to the structure and function of DNA and the basic processes of replication, translation, and transcription will afford students the conceptual background to understand the methods in which genes can be modified. Insight into the manner in which genetic material is passed through generations will be discovered when students trace genetically inherited traits through their families. Genetic therapies will be explored in relation to specific illnesses as a way of learning the steps needed to create individual genetic treatments. Within this context, students will learn the ways in which DNA can be altered and delivered into a cell; thus providing a reservoir of knowledge to create a personal engineering toolbox of vectors and therapies for the repair and treatment of genetic disorders. In the end, students will apply these concepts in a project where they create their own gene therapy to correct a genetic illness. Ultimately, the purpose of this unit is to offer students a glimpse into the world of genetic engineering, inspiring a new generation prepared, excited, and empowered to advance the landscape of global health.
Comments: