Genetic Engineering and Human Health

CONTENTS OF CURRICULUM UNIT 13.06.05

  1. Unit Guide
  1. Introduction and Rationale
  2. The Early History of HIV/ AIDS
  3. Viruses
  4. Retroviruses
  5. HIV
  6. Strategies
  7. Activities
  8. Appendix
  9. Notes
  10. Bibliography
  11. Additional Reading and Resources

HIV: From Horror to Hope

Timothy K. Spence

Published September 2013

Tools for this Unit:

Introduction and Rationale

When I was little, I was obsessed with the vastness of the night sky. To me, it was a dark sea of endless possibilities. I embraced a culture steeped in the thrill of science fiction, enthralled by the glamour of the early astronauts. My bedroom walls were full of artistic renderings of blighted extraterrestrial landscapes, and my bookcase was crammed with anything that had to do with outer space. I tell you these things to make it clear that I was a very motivated learner as a child, and that similar motivation happens to all kinds of people all of the time. It also doesn't happen to other people so readily. As a high school teacher who teaches various levels of math, I see both kinds of people every day.

Lack of student motivation is not a new problem, but I have noticed an uptick in it recently. I have been teaching math for ten years, and I am now very aware that teaching math in a lecture format to a bunch of sitting teenagers can be, for some, no more than a dull chore that has little to do with their technologically advanced, fast paced world. Those technological developments have changed our learning environment, and the time is now to consider alternative ways of presenting math. With that in mind, I have found that making connections between math and science has been the best way for me to tap into my student's natural curiosity and passion, and that is what I have strived for from the start.

My degree is in Chemistry, so my math courses have been peppered with dashes of chemistry and other science applications. I teach Algebra II and Calculus among other courses, so I really do have a pool of motivated, highly intelligent, and sure to be successful students who I work with. Many who make it to my Calculus class are headed to the sciences or engineering. I may have had my eyes on the skies when I was their age, but times have changed, and their focus is a little more earthbound. More and more of my students are considering a career in biotech and the biological sciences.

I have chosen the study of the most famous retrovirus, HIV-1, as the topic that I want to integrate into my Algebra II curriculum for several reasons. Human gene therapy may have experienced setbacks in past years, but it is certain to continue to play a major role in medical research. Retroviral vectors are probably the most widely used delivery vehicles in gene therapy because of their efficiency and precision of integration. 1 HIV-1 has some additional characteristics which can make it an even better candidate for some applications.

For a student considering a career in biology or medicine, this could be a very interesting and perhaps inspirational topic that he or she may have little or no knowledge of. Biology is taught at our school, but the curriculum is limited, and many of the more advanced students bypass it in favor of Chemistry. In any event, I like the idea of elevating my student's knowledge beyond the standards.

I would also like to explore HIV-1, which has played a major role in my life and the lives of many people I have known. Most sixteen year olds know some things about HIV, but probably not so much about the AIDS epidemic, and probably less about the ongoing battle to find a vaccine and a cure, and the new ways that HIV is being used in genetic engineering. There has never been a more fascinating disease, in terms of its mechanism, its impact on medical research and the pharmaceutical profession, and its political consequences. Although my class is a math class, I want to take some time to explore this section. I think it could be a good way to get things started, to create a sort of 'viral scaffolding'.

Algebra II contains a unit that deals with probability, and this will constitute the math part of the lesson. I have wanted to find an extracurricular topic to use as a real world application that the students could benefit from, and this should be a very good vehicle for presenting probability in a fresh and unique way. I plan to focus on topics involving HIV testing, viral mutation, and drug resistance as a basis for teaching probability.

My unit will be inquiry based, as I won't be sure just how much the students do know, and my hope is that they will have questions that I hadn't even considered. I encourage discussion. I plan on using pamphlets, handouts, and animations on my Smartboard as a delivery method for the information. There is no time for lengthy reading, and the animations that I have seen on the Web make some of the more complicated biological processes much easier to understand. They are perfect for students who have trouble with reading comprehension, and there are plenty of them, even in Algebra II. There will be an assessment on the unit, which in Algebra II, means some sort of test.

Finally, Algebra II seems to me a good point in a student's career to be exposed to something that integrates math, science, and the real world, because some of them are already thinking about their futures, and they still have a few years to do that. My hope is to spark some interest in a very relevant topic by stepping outside of my everyday math curriculum and see what happens. My students are probably not so different than I was when I was their age, looking out at their own dark sea of endless possibilities, and wondering what is coming next. I would like to provide a spark that, for at least some of them, might shed a little light on their path.

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback