From Arithmetic to Algebra: Variables, Word Problems, Fractions and the Rules

CONTENTS OF CURRICULUM UNIT 17.05.10

  1. Unit Guide
  1. Introduction
  2. Demographics
  3. Objectives
  4. Unit Content
  5. Teaching Strategies
  6. Classroom Activities
  7. Sample Problem Sets
  8. Teacher and Student Resources
  9. Appendix
  10. Bibliography

Exploring Kinematic Proportional Relationships

Zachary J. Meyers

Published September 2017

Tools for this Unit:

“And yet it moves.”

-- Galileo Galilei

Introduction

For many people, physics is an intimidating mixture of contemplation and critical thinking about everyday phenomena. Students in particular are often overwhelmed with its multifaceted nature and the complexity involved even with simple motion; especially when coupled with integrating mathematical formulas into problem solving. Questions often arise as to which formula to use, or what is the next step, rather than critically examining the question posed. Students view mathematics as a means to an end rather than a language of symbols to express and examine relationships among quantities. The foundational concepts of physics arose from understanding proportional relationships, which is a major deficit for many of my students.

Kinematics offers an approachable platform to connect the inherent relationships between mathematics and physics by strengthening students’ understandings of proportional relationships with regard to motion. To truly understand the nature of motion, the rate at which an object travels within space-time (i.e., when will the train arrive at its destination, how far will the ball travel given its initial velocity), students must delve deep into the meaning of algebraic expressions and ratios. This unit seeks to enhance meaning between mathematics and physics by inviting students to explain natural phenomena that involve motion, focusing on rates and proportional relationships. Over a period of 3 – 4 weeks, students will conduct several inquiry investigations, collect and analyze data, and interpret algebraic expressions. The unit will focus on student centered learning and adjust student work in accordance to data gathered from pre-assessment data. Class will be anchored in exploring physical concepts through experiential learning to elevate content comprehension and overall student engagement. The cumulative assessment(s) will consist of a lab report, student demonstration video explaining problem sets verbally, or an infographic that will connect mathematical and physical concepts in a visual medium. This assessment choice will allow students to demonstrate mastery in a variety of formats and offer opportunities for creative expression. It is my hope that this unit will motivate students to think critically about their physical environment, prompt active discussions based on their observations, and elevate their mastery in both mathematics and physical science.

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback