Introduction
To me, the intent of the Yale Initiative is to produce modules that are not only integral to a curriculum unit, but add an example from a related, but different discipline. In this way, the subject matter comes alive with a topic of interest to the student. Mathematic textbooks are notorious for their "drill and kill" mentality where a new mathematical algorithm is introduced followed by pages of simple problems of rote solutions and then a collection of unrelated story problems. Few students have the perseverance to work through the tedium of problems with no grounding in actual experience, much less even more complex story problems on a variety of problems ranging from business to engineering. Our topic, Astronomy, is one I believe captures everyone's imagination, especially students in Florida. Whether it is a starry night, a space launch, or just letting our imagination run wild with the Universe, man has documented his fascination in all art forms for thousands of years.
I teach statistics to juniors and seniors in an average high school. Approximately 15% of our graduates continue their education at a four-year college, 45% attend a junior college and the remainder choose other options such as military service, trade schools or join the workforce. Consequently, I am trying to provide a glimpse into the science of astronomy (at a very basic level) for any post primary grade as well as add enrichment for those students taking statistics by using a few basic facts of astronomy as we study regression analysis.
Teachers are assigned a text and related materials. Each chapter, at least in my experience, covers some topic followed by specific vocabulary, discussion questions, problems and enrichment exercises. What I find lacking is a thread, tying all the chapters together, solving one intriguing problem that encompasses all the chapters in the text. For example, a statistic book usually begins with descriptive statistics and goes through describing data as nominal, ordinal, interval or ratio. Then it takes a look at types of samples such as random or convenience and then moves on to measures of location (mean, mode, median), standard deviation and Z scores; finally, ending the first half of the course with a little probability. The second semester is devoted to inferential statistics in which decision solutions are made and are expressed with some or no degree of confidence in whatever the problem issues are; i.e. does this medicine work? Each chapter has all sorts of interesting problems on medicine, crime, population, etc. I think this is good to an extent, but if we had some sort of parallel, non-graded set of exercises outside the text as an empowering topic, I think the course would be much more enjoyable to the students and spark some self-motivation for further study.
Comments: