Strategies for Teaching Students to Use the Singapore Bar Models
I plan to begin with basic addition facts that are less than 20. I will teach the students how to draw Singapore bar models to illustrate addition and subtraction facts. The problem will be presented in a very straightforward manner such as, the sum of 7 and 8, or the difference of 15 and 8. Once the students can create these, I plan to progress to two digit numbers followed by three digit numbers. This step will involve a slightly different model with the use of brackets to represent the number for which each part stands. The next step is for the students, when presented with a word problem, to make sense of the words and draw a bar model to represent it. From this point, I will show the students how one model can represent different problems within a given scenario. Typically, there are several scenarios for the same problem. All parts of the problem are represented in the diagram and different problems can be written based on the parts that are known and unknown. The problems that are generated include problems related by inverse relationships. This strategy strengthens the students' understanding of the relationships shared by the four operations. I plan to have the students draw one illustration for each scenario. As the students become proficient the task will change. I expect the students to move into writing several related word problems for a given model.
When the students have mastered addition and subtraction word problems by modeling with bar diagrams, I will teach them how to construct a similar model for multiplication and division. Initially I plan to provide a word problem that involves a basic fact such as 3 x7 and demonstrate and discuss the bar model representation. After sharing a few models, I will ask the students to construct the models given a basic fact. From this stage, I will teach the students how to name several problems with the same bar model. This process again involves the inverse relationships and the fact that multiplication is derived form addition. The final step is to have the students write several different scenarios for the same bar model involving multiplication and division.
The final stage is to tackle multi-step problems with a bar picture that combines different operations. These are significantly more complicated, but by this stage the students should be comfortable with the models. I will begin by guiding the students through models of each dimension. Then the students will work in groups to categorize problems based on the two operations needed to solve the problem. Next the students will solve the problems. I expect this stage will take more practice than the previous ones.
A teaching strategy that I will use for instruction and for having the children model their problems is found on the interactive Thinking Blocks website. Using this website as a teaching tool, I will initially show the students the video demonstrations through the computer onto the projection screen. After the class views the video, we will create our own problem. The students will participate in the process by manipulating the online models to create and solve the problem. Then the students could use this tool and work with partners to model and solve a problem given to them. This site can also be used for remediation, centers, for class work and homework, for enrichment, and as a teaching tool/resource.
Comments: