Strategies
Facilitating Class Discussion
Often, I find that during whole-class discussions around two-thirds of students are engaged at any given time. My goal is to hold meaningful discussions in my classroom wherein all of my students are actively participating and contributing. Through my research I have found a great reference for opening up effective class discussions. A model in which every student is active is referred to ‘Total Participation’ by authors Himmele and Himmele.6 In their publication of Total Participation Techniques: Making Every Student an Active Learner, they have articulated several distinct categories for garnering student engagement. Within each category, they have described exercises for teachers to implement in their own classrooms. I will describe a few I plan to use during this unit. The categories I will reference are “On-the- Spots”, “Hold Ups”, and “Movement”. The following are methods as described in Himmele and Himmele’s publication and are paraphrased.
On-the-Spots
This category is intended for use when the teacher notices that a majority of students are becoming lethargic or disengaged from the class discussion.
Quick Draw: The teacher selects a concept students have been discussing. Then, students create a visual about what the concept means to them. The students then share with partners and the whole class.
Chalkboard Splash: During this activity, the teacher will write a question on the board, and then students will ‘splash’ the board with their responses. When students have recorded their thoughts, call students up to the board to make connections between responses and discuss the similarities and differences in their thinking.
Hold-Ups
These strategies should be used to promote whole class participation and on-task behaviors during a class discussion.
Whiteboard Response: Students can use paper, whiteboards, thumbs etc. to share their responses to questions at the same time. If students are positioned in a precise way, only the teacher will get to view their response. When used in my classroom, it has helped more quiet and shy students to contribute to discussion.
Number Card Hold-Up: To use this method, provide students with index sized cards labeled (0-9).
Students will use the numbers either individually or together to share their responses. Himmele and Himmele suggest using the following questions to garner responses:
Which number is greater? Which of these numbers is the least in value? What is the sum of these two numbers? What is the difference in these two numbers? What is the product of these two numbers? Himmele, Pérsida; Himmele, William (2011-07-21).
Involving Movement
Adding movement to class discussion is intended to give students more energy and get them excited about the topic being discussed.
Line-Ups: After posing a question to students, the teacher will ask students to jot down their thoughts and responses on a piece of paper. Students are called to line up in two parallel lines facing each other. This will create an opportunity for students to pair up with the person directly in front of them. After these two partners have shared their responses, the teacher can either ask students to share out what they and their partner discussed or to rotate and discuss further with a new partner.
Bounce Cards: In this exercise, students are presented with a bounce card. A template for a ‘Bounce Card’ can be found in the appendix. ‘Bouncing’ in this activity refers to taking a person’s idea and bouncing off it or ‘piggy backing’ on it. Guiding questions will be provided on the each card for student use. Students will use the cards to talk about what they agree on, what they disagree on, to make connections, and to summarize their partner’s ideas. I will model this activity regularly and very explicitly to students.
Methodology
The problem-solving model my students will use is referred to as the ‘UPS, Check’ method. The acronym stands for “Understand, Plan, Solve, Check.” This is a common approach to problem solving that is drawn from George Polya’s method for problem solving in his 1945 publication of How to Solve It. In his book, Polya identifies four basic principles for problem solving, “ Principle 1: Understand the Problem, Principle 2: Devise a Plan, Principle 3: Carry out the plan, Principle 4: Look Back.”7 A Graphic organizer for this method will be provided in the appendix.
Understanding: I will explicitly model this step throughout the unit as this step is commonly skipped and overlooked by my students. I would like them to be conscious that ‘Understanding’ in the context of a word problem refers to the following:
1) Comprehending the words in the problem.
2) Identifying the ‘given variables’ and the ‘unknowns’ in a problem.
3) Determining what information is needed to solve the problem.
4) Restating the question in their own words.
Planning: This will be modeled regularly for students. They will learn that planning must be done for every problem and that it will involve all or a few of the following elements:
1) Making lists.
2) Eliminating unreasonable answers.
3) Using a model/Drawing a picture.
Solving: Students will also review what happens in this part of the problem-solving process. This can look different for each student. To solve problems, students will be asked to:
1) Persevere through the problem solving process, even when situations are tricky, meticulous, and difficult.
2) Write an expression for their problem.
3) Show work and be able to walk someone else through the way they solved the problem.
Checking: Students often circle an answer when they have computed a number without considering if their choice makes sense. There will be a huge emphasis on this step in my classroom, as I want students to reason through their problem solving both verbally and on paper. This step will involve:
1) Looking for technical errors within their work.
2) Rereading the question to check for the reasonability of their answer.
3) Explaining to others how they arrived at their answer.
Comments: