Rationale
Math is a critical skill that all students need to accomplish; at the minimum, proficiency is required in order to increase their chances of succeeding in our competitive technological/numerical world. A few statistics illustrate this point. In a Public Broadcasting System (PBS) Internet, article: "A deficiency in certain basic math skills is more limiting now than it once was. In 1970, only nine percent of all jobs were considered technical. Today, nearly one-third of all jobs are classified as technical; most require far more computing skills than many jobs of the past." 1 Some careers in math include an electrical engineer, accountant, drafter, actuary, financial analyst, computer software engineer, and others. A final point to emphasize with young people is that math and science are behind the operations of their devices they use everyday: MP3 player, computer, and cell phones, just to name a few. We know these technological tools are fundamental to the average youth's existence.
The research data and my teaching experience have compelled me to implement immediate action to improve student math achievement. For example, reports suggest that if students are deficient in mathematics in their early years they remain deficient in their later years. Moreover, I am distressed by Kathie Nunley's research, which found that lack of student motivation remains one of the major reasons students do not succeed in mathematics, or any other subject. Her research may explain why there are higher numbers of high school dropouts in urban cities across the United States. Startling statistics from PBS highlight the urgent need to improve math instruction. 2 Seventeen-year-olds with math disabilities have, on average, a fifth-grade level of math knowledge. Thirty-five percent of children with learning disabilities drop out of high school. Why is this happening? One reason is that students are bored and they have not found any intrinsic connections to what they are learning and how it impacts or improves their life. What is the solution? Nunley proposes that motivation exists when students identify the relationship between their behavior and the outcome. 3
Student lack of engagement is one of the contributing factors influencing student achievement. Richard Schaar states a fundamental fact about student intellectual potential that dispels the myth that math is too difficult. What is important about Schaar's comment is that it can be supported with scientific data.
- When children realize that they can master these subjects (math and
- science), and that doing so can dramatically open up future
- possibilities, they become interested and engaged in the learning
- process.
- Richard Schaar
On the other hand, I am encouraged by research about the brain's plasticity, which is the ability of the brain to change through experience and its exceptional ability to learn complex information when necessary. This data confirms my belief that learning opportunities always exist. It is my responsibility to provide students with academic experiences for mathematical success. Furthermore, these results validate my desire to incorporate a math environment that is rich with stimulating and meaningful lessons. My sentiments are supported by Caine and Caine. Their text, Making Connections: Teaching and the Human Brain, emphasizes: brain research establishes and confirms multiple complex and concrete experiences are necessary for meaningful learning and teaching. 4
Perhaps the most important information gathered during my research on how the brain learns mathematics is the following theme. The key obstacles preventing students from achieving math success are lack of engagement, relevance, and real world connections. Consequently, I think a strategy to combat this pervasive negative attitude regarding learning is by implementing a holistic approach to education, specifically brain-based learning.
Brain-Based Learning
My unit emphasizes brain-based learning, which correlates with my philosophical views on how children learn. Brain-based learning is defined as a "comprehensive approach to instruction based on how current research in neuroscience suggests our brain learns naturally." 5 As a result, the approach points out the importance of teacher's instruction connecting to student's real life experiences. This type of learning underlines the following concepts: mastery learning; learning styles; multiple intelligences; cooperative learning; practical stimulations; experiential learning; problem-based learning; and movement education. Brain-based learning concepts are defined in appendix A.
Although brain-based learning suggests twelve core principles, five components stood out for me. First, meaning is more important than information. It is crucial to start with the learner's prior knowledge rather than make assumptions. For example, I need to talk with students and analyze the strategy utilized to solve the problem. Second, complex learning is enhanced by challenge and inhibited by stress. I intend to organize math tasks in a clear and concise manner. Such as, I will integrate multiple note taking strategies, give students numerous practice opportunities, and develop effective cooperative groups to enable children to review comprehension. Third, every brain is uniquely organized. Differentiation and learning styles are fundamental to this principle, which implies that for some activities students will require individualized modifications. Fourth, information is stored in multiple areas of the brain and is retrieved through multiple memory and neural pathways. I foresee this principle as the most difficult for students to grasp. I anticipate student access to appropriate Internet websites will clarify student understanding. Fifth, learning involves focused attention and peripheral perception; effective and creative lesson presentations will facilitate this principle. Lesson activities about the anatomy and function of the brain should provide students with a basic understanding. I will convey information in small chunks, allow adequate processing time, practice, and review. Advocates of brain-based learning believe that when a teacher understands the functions of the brain, it enables the teacher to establish efficient learning environments.
Summary
Learning about the anatomy and function of the brain has challenged me to re-examine my instructional practices. Through extensive research, I have obtained detailed background knowledge about how the brain works and the essential skills that are needed for mathematical achievement. I am now prepared to incorporate innovative strategies that will require students to synthesize and construct meaning. Writing this unit has provided me with an opportunity to create interdisciplinary lesson plans that address a variety of learning styles. Ultimately, students will continue to build a strong math foundation, which is an important life skill and a mandated subject for testing on state assessments.
Comments: