Nanotechnology and Human Health

CONTENTS OF CURRICULUM UNIT 10.05.03

  1. Unit Guide
  1. Overview
  2. Why Nano? : A Brief History
  3. Strange Science at the Nanoscale
  4. Nanotechnology at Work
  5. Conclusion
  6. Strategies
  7. Student Activities
  8. Teacher and Student Resources
  9. Teacher Introduction for Nanotechnology Activities
  10. Bibliography
  11. Endnotes

Teeny Tiny Wonders: Nanotechnology and Machines

Stephen James Griffith

Published September 2010

Tools for this Unit:

Why Nano? : A Brief History

Richard Feynman is considered the grandfather of nanotechnology. In 1959 he gave a lecture at Caltech to the American Physical Society titled "There's Plenty of Room at the Bottom." This speech highlighted the possibility available at the time of being able to write all of the volumes of the Encyclopedia Britannica onto the head of a pin. He further described that all of the information of all the books of the world could be written in a cube 1/200 th of an inch wide. 1

Through this talk he laid out the theoretical ideas for how to work and develop things at such a small scale. Talking to a group of physicists he told them that this was old news to those in the science of biology. Biologists had been studying DNA for decades: although its structure had only been revealed a few years before his lecture, they already knew that this tiny elongated chain coded for everything that made a human, or any plant or animal for that matter. He suggested that biologists were simply waiting around for physicists to catch up with their thinking in order to create new machines needed to see below the visible light spectrum. This was eventually realized in the electron microscope. The remainder of the lecture went through various scenarios for miniaturizing and working with different materials at such small scale. 2

The conclusion of Feynman's lecture was a set of challenges to prove some of the points of his lecture could become reality. One was the creation of a working electric rotary motor to be no larger than 1/64 inch cubed. This first challenge was completed successfully less than a year after this lecture. William McLellan created a working motor at the scale suggested by Feynman; McLellan was able to complete this task using convential machinery and not by the methods Feynman suggested in his lecture. This however proves to be at the "bottom" of what humans are capable of building using traditional means. The second challenge was to write one complete page of a text at the scale 1/25,000 of normal standard print size. This challenge was not met until 1985 by Tom Newman. Newman successfully used an electron beam to write a page from A Tale of Two Cities on the head of a pin; he later stated how hard it was to find the text on the vast emptiness of the head of the pin compared to the actual text demonstrating the extremely small scale in which nanoscience takes place. 3

This beginning led the way for the nano-revolution currently going on around the world. As technology has increased more tools have become available, such as the electron microscope, more and more research has been conductred into this miniscule world. As scientists began to be able to observe this small "world" it became evident that the properties of matter change significantly when you get down to this size, making it essential to understand some of the physical attributes of objects at this scale in order to work and produce objects at this scale.

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback