Nanotechnology and Human Health

CONTENTS OF CURRICULUM UNIT 10.05.04

  1. Unit Guide
  1. Introduction
  2. Nanotechnology Background
  3. Explanation of Quantum Mechanics
  4. Advanced Quantum Mechanical Concepts
  5. Strategies
  6. Classroom Activities
  7. Endnotes
  8. Resources
  9. Appendix- National Standards (NSES)

Nanotechnology and Quantum Mechanics: Bringing High School Physics into the 21st Century

Eric J. Laurenson

Published September 2010

Tools for this Unit:

Classroom Activities

Lesson Plan 1— Strength vs Weight and Self-Assembly

Demonstrating the implications of nanotechnology using classical mechanics, I will have the students conduct a lab on strength vs. weight. This will demonstrate the reason that structures are much stronger at smaller scales because their strength is dependent on the cross-sectional area, L 2, whereas the weight that is supported is related to the volume which is, L 3.

Another important implication of nanotechnology is the explanation of self-assembly. If the conditions are right, then complex arrangements of molecules can self-assemble. This is the greatest hope for nanotechnology because it allows for the production of large scale "assemblies" that it is not possible to currently create molecule by molecule. I will demonstrate how self-assembly works when there are the right constituent parts (molecules such as proteins that tend toward certain encoded shapes and have sufficient "stickiness") and the correct environment (the correct amount of thermal energy- Brownian motion). I will attempt to demonstrate this by objects in water minimizing the surface tension, which is a method of finding the lowest energy state; the separation of oil and water into hydrophilic and hydrophobic regions either along the surface in a lipid layer or in the formation of micelles if the oil is dispersed by mixing in the water; and lastly, by the formation of soap bubbles, reducing the surface area-volume ratio.

Lesson Plan 2— Quantum dots and Nanotechnology Design

We will study quantum dots and how the color change of nanoparticles can be explained. We will also consider methods of nano engineering. This involves discussing using the method of self assembly, building one atom at a time, or attempting to design like natural soft machines. We will discuss the differences between designing like nature and traditional engineering methods. The discussion will lead into quantum effects at this scale and how it affects design. We will consider the implications of decreasing scale where eventually individual electrons are flowing through "wires". This will introduce us to computation and information technology and will naturally lead to a discussion on what is meant by quantum computing.

My classes will attend a field trip to the university about nanotechnology and visit a lab to see quantum dot effects. We will set up the nanoparticles of gold at nanoscale sizes that will allow for the entire spectrum to be displayed. We will also discuss the progress of nanotechnology and see the relevant advances that are being made in the field including nanoscale electronic boards that are built in very cold temperatures less than 1K. We will also discuss the quantum computer endeavor to create computers without wires and bits that involve single atoms or molecules instead of thousands of electrons per current bit of information. The theoretical aspects of quantum computing using spin will be explored.

Lesson Plan 3— Quantum mechanics— double slit experiment

Using a laser, I will set up the double slit experiment and demonstrate the diffraction pattern that results. I will also demonstrate the "particle" like pattern without interference that results from opening a single slit at a time. (This will require a screen that can record the received photons over time). We will have a class discussion about the implications of the duality of light and particles.

The class will have a debate about whether light is a particle or a wave. The class will be divided into three groups. The first two groups will research the nature of light. One group will discuss all of the known information supporting the idea that light is a wave. The second group will research and present all of the information that light is a particle. The debate will last for twenty minutes. Afterwards the third group which has researched the duality of light will present to the entire class our best understanding of how light is both particle and wave or sometimes like either depending on the situation and whether there is observation taking place.

Once the presentation and debates are over the students will write a paper on their understanding of the duality of light and the best explanation that they can provide for the "weirdness" of the implications of duality of light and quantum mechanics. They will also be encouraged to suggest what the implications are for the fact that electrons and all matter actually have the same duality and have wave properties as well. I will present information about the Schrodinger Wave equation and some students may chose to discuss its implications as well.

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback