Introduction & Background
Genetic identification, paternity testing, genetically modified foods, and gene therapy are some of the applications in which genetic engineering is widely used today. It seems that you can't turn on the television without a CSI (Crime Scene Investigation) or Maury Povich show asking for the results of a DNA test. The field of genetics has gone beyond simply mapping the sequence of human DNA. New frontiers in biotechnology, genomics, and biomedical engineering are driving a debatable question, "How much information is too much information." But, what is DNA? Does the average person or student really understand the science of the DNA tests they hear about? If you had the ability to predict the diseases or conditions you may have, would you want to know? How important is it to know everything? These are some questions that can be explored through study of genetics and genetic engineering.
The last 50 years have seen an explosion of scientific and technological advancement in DNA technology. This is especially true in the field of DNA forensics. The application of DNA testing in crime cases began in 1984 with Alec Jeffreys' work on DNA fingerprinting. 1 Today, the Innocence Project states that nationwide 309 post-conviction DNA exonerations have occurred showing yet another use of DNA beyond its gene therapy potential. 2 Furthermore, many of the victims of 9/11 were identified using DNA identification technology. How were scientists able to do this?
With the prevalence of DNA in the media, my students naturally have a fascination for its applications in the real world. Thus, in my forensics science course, I hope to review basic DNA biology and genetics. It will serve as a starting point for the introduction of a routinely used genetic engineering tool for DNA amplification. Finally, students will learn about DNA profiling and apply their acquired skills in laboratory activities. Over the course of four weeks, students will learn the skills needed to run their own PCR (Polymerase Chain Reaction) centered on a mock-forensic case.
Mt. Pleasant High School in East Side San Jose California had a student enrollment of 1556 in the 2012-2013 school year. In the past four years, student enrollment has dropped from 1927 students in 2008. 3 We have the added task of competing for enrollment against newly formed charter schools and the movement of families out of the area due to the high cost of living. This trend has meant that Mt. Pleasant High School has been finding new ways to retain its student population, while continuing to serve its primarily Hispanic/Latino student body. Mt. Pleasant continues to be in Program Improvement, with the 2012 school being our third year. Within our largest population, Hispanic/Latino students, 800 of 1085 are considered Socio-economically disadvantaged, 581 are considered Limited English Proficient, and 176 are considered Special Education eligible. 4 Furthermore, according to No Child Left Behind our school has not met its AYP (Adequate Yearly Progress) for several reasons. One reason is that our graduation rate for 2012 was 76.2%, far from the target goal of 90%. The second reason for not meeting the AYP is that our English and Mathematics proficiency rates for all subgroups were nearly 20% below the target of 77.8% and 77.4% respectively. 5 Though some improvements have been made, overall our school strives to increase success among our EL (English Learner) students in order to increase our API scores and meet AYP.
With the added challenge of Common Core State Standards we are seeking new ways to incorporate real-world applications into our classrooms. In examining how we currently teach our classes, it is clear that we can no longer just teach one subject. High school courses are being taught with an interdisciplinary eye. Math classes must move towards incorporating reading and problem solving skills beyond manipulation of numbers. English classes must incorporate history and science readings beyond literature and writing. Science in turn must teach writing, math, in the context of the subject matter being taught. Thus, as we move towards infusing our everyday lessons with interdisciplinary material we hope students will be able to articulate their understanding not only in the classroom but during the state tests.
Comments: