Manipulating Biology: Costs, Benefits and Controversies

CONTENTS OF CURRICULUM UNIT 18.05.04

  1. Unit Guide
  1. Introduction and Rationale
  2. Learning Objectives
  3. Content Objectives
  4. Strategies
  5. Classroom Activities
  6. Appendix A: Implementing District Standards
  7. Bibliography
  8. Endnotes

Feeding the World Using Genetically Modified Organisms: A Survey of GMO Technology and its Impact on Agricultural Production

Michael Albert Doody

Published September 2018

Tools for this Unit:

Introduction and Rationale

The current population of the planet is roughly 7.4 billion people. Of these 7.4 billion people, 1 billion are considered to be chronically undernourished. By the year 2050, there will be at least 2.5 billion additional people on the planet, and most of these people will live in regions where chronic undernourishment and famine are already problematic.1 What’s more is that the agricultural productivity of the planet may be in jeopardy due to the looming threat of climate change, which is predicted to result in increased desertification, changes in rainfall patterns, pest ranges, and salinity.2,3 This is especially true in arid and semi-arid regions where food shortages are already a stark reality for millions of people. These two problems are made even worse by the fact that they are intricately linked: more people require more food, more food requires more productive land, more productive land is not available, more food is not available, and ultimately people become increasingly undernourished or face famine.

Genetically modified organisms (GMOs) have shown promise in increasing crop yields in stressed environments and may prove vital in feeding this growing population.4 However, many people are mis- or underinformed about GMOs and their benefits and costs. I feel it is vital that as the next generation of voters/consumers/scientists, my students should understand the magnitude of the global food crisis, its interconnectivity with climate change, and the role GMOs may play in addressing this issue. This newly developed unit that enhances my Land Use and Agriculture section of my Advanced Placement Environmental Science (APES) course is the first step toward helping my students achieve that understanding. In this unit, students work to develop a scientific understanding of what GMOs are and how/why/where they are being used, as well as an evidence-based opinion on their role in feeding the planet moving forward. This unit challenges students to integrate information across disciplines to form a better understanding of GMOs and their role in feeding a growing population.

School Profile and Course Specifics

William Penn High School is a public high school in the Colonial School District in New Castle County, DE. It is the only high school in the district and it is the largest high school in the state of Delaware, serving approximately 2,200 students in grades 9-12. The school district is mostly suburban, with small portions of the district being considered urban (the far northern portion of the district pulls from southern Wilmington) and some being considered rural (the far southern portion of the district pulls from farmland situated on either side of the Chesapeake and Delaware Canal). In total, the district serves over 10,000 students and expects to increase in size as the New Castle area experiences a revitalization of industry and job growth.

In order to make every student college and career ready, William Penn High School is divided into three college academies: the STEM College Academy, the Humanities College Academy, and the Business College Academy. Each college offers majors, or pathways of study. Incoming students decide on a pathway of study and must earn three consecutive credits related to that pathway as a requirement for graduation. AP Environmental Science (APES), the course for which this unit will be written, is the capstone course for the Environmental and Natural Resources (ENRS) pathway. Students in the ENRS pathway take Introduction to Agriscience, Natural Resources and Ecology, and Environmental Science Issues. The motivation behind this pathway is to provide students with access to the content knowledge and career skills necessary to continue on to study environmental science in their post-secondary education and/or to be ready to enter the environmental workforce upon graduation. To that end, students in this pathway get field experience, four credits of environmental science, and access to internships in related fields. The ENRS program at William Penn is uniquely positioned to take advantage of several educational resources, including the school’s chemistry and biology labs, a multi-acre farm operated by the district (Penn Farm), an aquaponics facility, a greenhouse, and partnerships with higher educational institutions and local businesses. Several of these resources will prove vital to students during this agriculture-based unit.

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback