Solving Environmental Problems through Engineering

CONTENTS OF CURRICULUM UNIT 20.04.02

  1. Unit Guide
  1. Introduction
  2. Rationale
  3. Learning Objectives
  4. Background
  5. Teaching Strategies
  6. Classroom Activities
  7. Appendix: Implementing District Standards
  8. Teaching Resources
  9. Bibliography
  10. Endnotes

Building a Heat-Resilient Community in Richmond, Virginia

Ryan A Bennett

Published September 2020

Tools for this Unit:

Classroom Activities

Prior to teaching this unit in the 5th grade science class, students will have been exposed to the iterative process of the scientifc method and it’s steps: observation (question, predict), hypothesis (educated guess), experiment (test it), results (collect data), and conclusion (summarize). Throughout the lesson students will be able to access what they learned about the scientific method in their interactive notebooks. Each lesson will be between 45 minutes and one hour long.

Lesson 1: Students will begin by investigating how light energy does work to cause change into another energy form, such as thermal and radiant energy. Students will go outside near the playground and measure temperatures at three different stations. Station 1 will be measuring the temperatures of a white and black material, such as a roof shingle, a flooring tile. Station 2 will measure temperatures of an area under a tree canopy and an area unprotected from a tree canopy. Station 3 will measure temperatures of pavement and a grassy area. While students are reading thermometers, they will have to record observations about why they think there is a difference in temperatures at each station. After roughly 5 minutes at each station totaling 15 minutes, we will come back to the classsroom to share our findings and make conclusions as a group. Time permitting, students can calculate the SRI (Solar Reflectance Index) during the investigation mentioned in the Cool Roofing section. The concept of energy conservation as it relates to the warming of our Earth’s surface will be discussed and related to the light energy from the sun. As an exit ticket, students will write a pargraph about how they currently conserve enrgy at home and school, and what more they can do to conserve energy more efficiently.

Lesson 2: The lesson will begin by summarizing the findings from observations about temperature differences and conserving energy the day before. Students will share out on their ideas about how they currently conserve energy and how they can continue to conserve energy more efficiently. Students will be informally assessed about what they already know about renewable and nonrenewable energy using a short assessment containing picture examples of various types of energies, such as fossil fuels, biomass, solar, wind, geothermal, etc. Following this, students will receive close notes to fill in during a powerpoint dicsussion on renewable energy and as it relates to heat island solutions. Maps presenting hotter areas in Richmond communities with more poverty will be presented and discussed. Students will be asked to critically think and journal. The guiding question will be “Is it fair for people who have less money and resources to have less renewable resources as they relate to urban heat? Why?” After writing, students will share out and classroom conclusions will be made.

Lesson 3: We will begin be reviewing lesson 1 and 2 and our class conlcusions about environemntal equity and the fairness of less resources in areas of Richmond where it is hotter. We will watch the video Mayah’s Lot as a class with comprehension questions as the video progresses. Following a discussion of the video and key takeaways we will play the Limited Resources Game. In small student-led groups, students will be tasked with making the biggest tower out of daily recyclable materials. The catch is the there are inequitable resources among the groups, demonstrating heat vulnerability and segregation in Richmond. As the teacher monitors and observes how each of the groups are working together, I will pay close attention  how students realize the difference in their resources. After about 10 minutes of building, I will bring the class back together for initial comments making sure each group is heard and portraying the activity as social inequities in our neighborhood environments. After a group discussion, students will write and reflect for 5-10 minutes on their experiences. Guiding questions can include “What actions did you take? What could you have done differently?” I will record student responses so reflections can be continued and built upon later.

Lesson 4&5: Continuing the theme of renewable energy and conservation of energy, we will start to look at urban heat island mitigation strategies in a powerpoint, while students follow along filling in close notes and drawing their own models and representations of these research based strategies. Key concepts provided will be trees and vegetation, green roofing, cool roofing, and cool pavements. Following an introduction to these strategies, students will be grouped into collabortive teams of four. Each group will be provided a local Richmond case study of an area where urban heat is excessive. Students will then brainstorm utilizing notes in their journals, and initially develop responses for their specific case studies. Different scenarios will require different responses, with scaffolding from teachers to develop critical thinking in their responses. A second class period will be fully devoted to creating a 3-D model with various construction and coloring materials to represent their solutions to excessive urban heat in Richmond communities. Students will adhere to a formal rubric for grading. For the last 10 minutes, students will reflect in their interactive journals why they chose their designs and why it’s important to implement their responses, especially in underserved communities.

Lesson 6&7: For the final two lessons, students will go through the iterative writing process to complete a persuasive essay. These will besent to the corresponding city councilpersons for each case scenario. On the first day, students will complete a graphic organizer to collect their thoughts such as a flow chart or an idea map. Following successful completion and a teacher check of a graphic organizer, the student may begin individually writing their rough draft. On the second day of writing, students will receive comments from the teacher for revision. Students will begin to edit their rough drafts for capitalization, punctuation, and any other grammatical issues. Once a final draft is complete and approved by the teacher, the student will have the option to type their paper based on their skill level and time remaining.

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback