Energy, Climate, Environment

CONTENTS OF CURRICULUM UNIT 09.07.06

  1. Unit Guide
  1. Introduction
  2. Rationale
  3. Background
  4. Key Ideas and Essential Understandings
  5. Objectives and Strategies
  6. Conclusion
  7. Activity #1
  8. Activity #5
  9. Activity #7 Kessinger's Apprentices
  10. Appendix 1
  11. Endnotes

Unconventional Transportation

Laura Kessinger

Published September 2009

Tools for this Unit:

Objectives and Strategies

We are more often than not completely aware of our impact to the environment. There is almost a sense of entitlement to the Earth's resources. This feeling of entitlement may be imbedded in culture, it might be an effect of the media, or some might argue it simply part of human nature. However, this ignorance to impact, this sense of privilege is damaging to our homes, communities, cities, nation, planet, and future. We must become cognizant of our actions, the causes of our actions and the effects of our actions.

In order to get students thinking about the actions of both themselves, and their families this unit will begin with an introduction to data. We will collect data on our own transportation habits, customs, and methods. We will build our own data sets and analyze our own. Additionally, we will look at and evaluate available national and local transportation data. Transportation was chosen because it is something students are very familiar and comfortable with, but not something they necessarily consider as harmful to anyone or anything. This will open the door for consideration of other influences (both positive and negative) that students have on the Earth.

Objective #1 - Organize, describe, and make predictions from existing data.

Students will be able to construct, read, and interpret tables, graphs and charts, to organize and represent data. Students will begin by collecting data on all the transportation methods they utilized in one full day. From sun up to sun down students will track all the places they went, the mode of transportation used, and the time spent in transit. Students will utilize stop watches throughout the day to calculate their time in rides and steps. After their data is collected we will calculate the energy exerted in their transiting. This is to get them thinking consciously about their personal and their family's energy usage for transportation. We will use this data to create line, bar, and circle graphs of their individual data. This construction will allude to conversations of usage, energy exertion, and multiple methods of transportation. This hands on construction approach will allow the students to explore their own methods of transit, collect data, and construct results of their own data. (Activity #1)

After we've made graphs and charts of our personal transportation we will begin to analyze the energy usage specifically of each. We'll compare burning calories in our bodies and excreting carbon dioxide, to the emissions of a vehicle. In small heterogeneous ability groups students will discuss their preferences for transportation and the reasons for their preferences. They will then list the potential environmental effects of their preferences. Groups will estimate the amount of pollution their preferences cause the community. Then each group will be presented with a different set of data. The data will consist of an individual's commuting distance, their method of transportation, and the amount of air pollution their commute creates. Small groups will then calculate the environmental impact of their commuter, on a weekly, monthly, and yearly basis. Groups will share their individual calculations and we will create a class commuter line graph. This is to key students into their usage and effects of transportation on the environment. From their calculations and descriptions of the data students should glean an understanding of their action's impact. Working in small heterogeneous groupings allows students of higher ability to assist lower while including every student in the conversations. (Activity #2)

Additionally, students will be able to calculate and compare mean, median, mode, and range. As an ongoing project students will be collecting data on indoor outdoor air pollution and graphing it on a daily basis. They will be using a handheld particle meter that measures airborne particles in parts per million (ppm). Keeping with the current theme of air pollution students will now begin to examine the air quality around them. Using the particle meter students will gather data of time, relative location, and parts per million of air particles in a variety of locations at varying times. The single classroom particulate meter will be rotated around to groups which will be allowed to measure the indoor and outdoor air quality at different times of day. The meter will join us at recess, during electives, and on field trips. As each group completes their data gathering they will add it to the classroom compiled listing. As a daily exercise the class will then compute the new mean, median, mode, and range of the data received. There will be a class bulletin board that tracks this data. The data gathering group will in written form respond to the data suggesting reasons for rises and falls of particulate matter, and describing the mathematical functions of each calculation. This hands-on approach allows students to utilize real life data, relative to their community and health. By making this information relative to their lives not only are they calculating the mathematical concept their analyzing the quality of the community's air that surrounds them. (Activity #3)

Objective #2 - Formulate questions design data collection methods gather and organize data and communicate findings.

Students will be able to formulate questions and conduct experiments, gather data, draw conclusions, and communicate results. Continuing our data collection with the particulate meter students will in small groups create a list of situations which promote predictions of ppm changes in the atmosphere. For example, students might ask how the outside air ppm differs on a cloudy over cast humid day versus a clear windy day. At this step students will not make predictions must merely consider the situations for comparison. This will allow students to begin to draw correlations between the air quality and environmental circumstance. Connecting these two concepts indirectly will encourage students to naturally draw cause and consequence parallels in habits and end outcomes. Each group will be responsible for setting up five hypothetical situations.

Next groups will trade situations. With the new situations each group will brainstorm a hypothesis for each circumstance. They will justify their hypothesis in writing with a rational explanation detailing why their predictions are correct. Then they will begin to gather and collect data to simulate their assigned settings. These simple experiments will allow students a simple controlled exposure to the scientific method while working on their ability to assemble and analyze data. The final step of this assignment will be a written analysis of their data, including an explanation supporting or rejecting original hypothesis. (Activity #4)

Objective #3 - Determine, describe, and apply probabilities.

Students will be able to analyze problem situations and predict results. Nothing gets your point across more than opportunities to touch, feel, move, and manipulate. Students need to see and feel to fully comprehend and articulate ideas and feelings. In order for students to really understand the amount of pollution a vehicle truly contributes to the Earth they must see and discover all the components of a vehicle. Students will be presented with the questions of: What happens to an unusable car? Where does it go? What is biodegradable? Students will begin to tackle these problems with a brainstorm name all the parts of a car you can think of. We will list the parts they can think of on the board then consider what fluids are used with or contained in these parts? Again we'll list these items on the board. Once the list is as complete as possible we'll head to the parking lot to actually visually dissect the anatomy of a vehicle. Here we'll compile a more complete list of the actual components of a vehicle and the fluids. When we return to the classroom each group will receive a bottle of one of the car fluids we listed (antifreeze, brake fluid, transmission fluid, power steering fluid, oil, etc.). Each group will read the warning labels for their product aloud. Finally we'll discuss the biodegradability of the vehicle. Students will estimate the lifecycle of a vehicle, the weight of waste, and they will list the environmental impacts.

The following day students will look at the DOE's data of vehicle waste, and vehicle lifecycles. Using their knowledge of the actual anatomy of a vehicle, students will predict the amount of vehicle solid waste will exist in five, ten, and twenty years. Students will then analyze both the data and their predictions and make five suggestions for lessening this enormous waste. Combining such a hands on physical activity with simple data allows students to realistically visualize our physical impact on the environment, evaluate their surroundings, and contemplate change. (Activity #5)

Objective #4 - Know and apply concepts that describe the features and processes of the Earth and its resources

Now that students have seen the damaging effects of petroleum usage in transportation and transportation waste, they will need a background in cleaner fuel sources. Students will be completing an individual research project on a renewable resource. This individual project will provide students an opportunity to break from the constant group work to perform some individual knowledge. Students will choose between solar, wind, hydro, biomass, or geothermal power resources and perform individual research. The projects will be completed over a two week fall break at home with parental support and a required library research trip. By creating a home research project that requires adult support students will be forced to concern their families with our current projects.

Projects will have a science component, how does it actually work? An analysis section will require students to consider both the positive and negative components of their resource. A technology section that would require a list of needed infrastructure to make the project successful. Additionally the research will include a viable opportunity section in which students will consider where in our country this resource would be most conceivable and why. Projects will have both a written and visual component; additionally they must include at least two text sources and two web sources. This individual research allows students a choice of direction and also opens them up to looking at energy in a positive platform. The teacher will have sequestered several kid friendly texts and websites for research at the library. (Activity #6)

Objective #5 - Know and apply the concepts, principles, and processes of technological design.

Students will be able to identify a design problem and establish criteria for determining the success of a potential solution. Nothing motivates more than the sheer human desire to catapult a competition. Students will be using multiple learning modalities to fully master these objectives in a friendly classroom competition entitled Kessinger's Apprentices. Based on the Donald Trump reality television show students will be fully engaged as their group competes to build a natural resource powered method of transportation. The project allows students to show off their new knowledge and apply it in an innovative way. Allowing students the freedom of some creativity while cultivating their knowledge in a structured format it is best done as a group activity so that students can learn from one another and utilize each other's strengths. This project is meant to be a cumulative project heavily weighted and graded on a rubric.

The challenge is to conceive, sketch, build, promote, and justify a prototype transportation method that people will use for business and leisure. The rules are simple. First, the energy used to power your transportation must be a renewable resource. Second your method of transit does not have to be a vehicle; however it must be useful in Chicago's urban environment. Third, your transit method must be user friendly; people should want to own/ride it. Finally, all team members must fulfill a role in the success of your vehicle.

Groups will be conceived based on the previous research project. One person from each renewable resource will be included in each group. Each member of the group has a role. This allows students to fulfill a specific function and duty in the whole project. However, they are each equally responsible for the final outcome. This type of project builds morale and cooperative learning teams that must focus on the task at hand and learn to work with, not around, each other's personalities and strengths.

The challenge will take place in six steps beginning with a brainstorming process. Here they will choose the method of transportation and renewable resource. The group's consensus and ideas will then be transferred into sketches of their concepts. These sketches will be submitted for approval of concepts. The ideas should be conceivable, not fantasy based, and possible to create. Teacher will provide constructive criticism in a "push back" meeting so groups can reflect on their ideas, interpret potential setbacks, and overcome impending obstacles to their sketching.

After their sketches have been approved groups will begin the researching phase. Students will submit a list of materials needed to build their prototype. Additionally, they will begin researching the technology needed to build a real life model of their concepts. Students will list the positives and negatives of their resources, and alternate options/additions that could be offered. They will analyze the environmental impacts and costs of building and replacing current methods of transportation. This critical research will afford students the opportunity to search for existing resources and extend contacts to professionals in the alternate energy industry.

Next they'll receive the materials to build their projects. However, in the first Kessinger's Apprentice twist students will only receive a limited quantity of the resources they requested. This will require that groups work together closely to consider alternatives. Students need the opportunity to readjust plans and ideas when things do not go quite as originally planned.

After building a functioning prototype, students will promote their method through both print and audio visual advertising. Student groups will create a promotional video to highlight the new method of transit and help change current mind sets. As common perception is a major obstacle to creating social change, and modifying existing habits.

Finally, students will face the board for review of their project. The board will grade the group on the provided rubric focusing on innovation, design, promotion, research, and collaboration. Students will face the board in a meeting to justify their product. They'll be held accountable for their time and effort. They'll also face each other and themselves in group/self assessments. This method of assessment allows students to justify their actions, results, and products. It allows them to show off their work and verbally explain the rationale and motivation of their project. It also allows each group member some reflection as they hear from the others about their contribution to the finished project. (Activity #7)

Comments:

Add a Comment

Characters Left: 500

Unit Survey

Feedback