Rationale
The second grade standard, VA SOL 2.13 which pertains to Measurement and Geometry, does not include the concepts of perimeter, area, and volume. VA SOL 2.13 indicates that the students should identify, describe, compare, and contrast various solid figures, and that is the full extent of the student’s exposure and involvement with geometry in the second grade. This can prove to be problematic as each teacher is left to determine the amount of geometric detail and depth they will provide their students with. This leads to fewer students being exposed to relevant skills; hence, students will be introduced to the concepts of perimeter and area in third grade, and during that same year they will be assessed on the concepts. Volume is not introduced until the fifth grade. The time frame for implementing these concepts seems to be much too late and may interfere with the progress of many students. Almost simultaneously when students are presented with the concepts, they are required to not only solve problems related to perimeter, area, and volume, but also, students may be asked to perform at Blooms Taxonomy’s, higher end analysis level regarding geometric concepts on standardized tests. By the time that the student enters fifth grade, he or she will have less time to practice skills covering the concept prior to assessment time. Students who are exposed earlier have a greater opportunity for success.
The Math state standardized exam for third, fourth, and fifth grade students includes approximately 10% of geometrically comprised questions. However, my efforts are an attempt to scaffold, by laying a foundation for future successive, more complex geometry concepts as each student progresses to higher grade levels. Other countries address their pedagogical approach in a varied manner. When considering the delay of the presentation of the geometric concepts, some may view our planning and scheduling for geometry as slightly haphazard. Although the mathematic prowess of many students has improved overall, some students still suffer mathematically. Bolstering geometry as well as basic skills provides for a solid foundation that ultimately enables all students to achieve mathematic growth.
Geometry plays a role in our daily lives, as it is all around us.
“Geometry can be found in the structure of the solar system, in the geological formations, in rocks and crystals, in plants, and flowers, as well as in animals, and it is a part of our synthetic universe (art, architecture, cars, etc.); Geometric explorations can develop problem-solving skills; Geometry plays a key role in the study of other areas of mathematics; Geometry can also be fun.”1
While geometry can be fun, it is time that our students be immersed with geometric concepts from preschool through grade 12. A change is necessary. That change would include new methods geared towards including as many foundational geometry concepts as possible, in pre-school as well as all grade levels. Accordingly, it has been concluded that,
“by engaging in the processes of conceptual understanding, procedural fluency, adaptive reasoning, productive disposition, and strategic competence (areas addressed when working through tasks in geometry), students learn mathematics by doing mathematics”.2
My current focus is to prepare the students that I am working with as well as many of the other students that are in my school building, and so I will share this unit with my colleagues. I will promote the idea that geometry must be taught in all classrooms at my school more consistently, while requesting that we all add depth to our Geometry lessons(mostly in the lower grades as more rigorous efforts are already being carried out in grades 3-5). No longer should anyone believe that children should wait until they join a testing grade to be immersed in higher level geometric based tasks.
Comments: